Sáng kiến kinh nghiệm Một số sai lầm thường gặp của học sinh khi tính tích phân

Sáng kiến kinh nghiệm Một số sai lầm thường gặp của học sinh khi tính tích phân

Trong đề thi tốt nghiệp THPT , Đại học , Cao đẳng, THCN của các năm bài toán tích phân hầu như không thể thiếu nhưng đối với học sinh THPT bài toán tích phân là một trong những bài toán khó vì nó cần đến sự áp dụng linh hoạt của định nghĩa, các tính chất , các phương pháp tính của tích phân. Trong thực tế đa số học sinh tính tích phân một cách hết sức máy móc đó là: tìm một nguyên hàm của hàm số cần tính tích phân rồi dùng định nghĩa của tích phân hoặc phương pháp đổi biến số, phương pháp tính tích phân từng phần mà rất ít học sinh để ý đến nguyên hàm của hàm số tìm được có phải là nguyên hàm của hàm số đó trên đoạn lấy tích phân hay không? phép đặt biến mới trong phương pháp đổi biến số có nghĩa không? Phép biến đổi hàm số có tương đương không? vì thế trong quá trình tính tích phân học sinh thường mắc phải những sai lầm dẫn đến lời giải sai qua thực tế giảng dạy nhiều năm tôi nhận thấy rất rõ yếu điểm này của học sinh vì vậy tôi mạnh dạn đề xuất sáng kiến : “ Một số sai lầm thường gặp

doc 14 trang thuychi01 6250
Bạn đang xem tài liệu "Sáng kiến kinh nghiệm Một số sai lầm thường gặp của học sinh khi tính tích phân", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
SỞ GIÁO DỤC VÀ ĐÀO TẠO THANH HÓA
TRƯỜNG THPT TRIỆU SƠN 6
SÁNG KIẾN KINH NGHIỆM
MỘT SỐ SAI LẦM THƯỜNG GẶP CỦA HỌC SINH
KHI TÍNH TÍCH PHÂN
Người thực hiện: Lê Thị Hương
Chức vụ: Giáo viên
SKKN thuộc lĩnh vực (môn): Toán.
THANH HÓA NĂM 2017
 MỤC LỤC trang
A : MỞ ĐẦU	 3
I. Lí do chọn đề tài	 3
II. Mục đích nghiên cứu	 3
III.Đối tượng nghiên cứu. 3 
IV. Phương pháp nghiên cứu	 3	-4
B : NỘI DUNG	 4
I. Cơ sở lí luận	 4
II. Thực trạng 	 4
III.Giải pháp thực hiện 4-10
IV. Hiệu quả của sáng kiến	 10
PHẦN III: KẾT LUẬN - KIẾN NGHỊ	 10-11
A: MỞ ĐẦU
I.LÍ DO CHỌN ĐỀ TÀI
Trong đề thi tốt nghiệp THPT , Đại học , Cao đẳng, THCN của các năm bài toán tích phân hầu như không thể thiếu nhưng đối với học sinh THPT bài toán tích phân là một trong những bài toán khó vì nó cần đến sự áp dụng linh hoạt của định nghĩa, các tính chất , các phương pháp tính của tích phân. Trong thực tế đa số học sinh tính tích phân một cách hết sức máy móc đó là: tìm một nguyên hàm của hàm số cần tính tích phân rồi dùng định nghĩa của tích phân hoặc phương pháp đổi biến số, phương pháp tính tích phân từng phần mà rất ít học sinh để ý đến nguyên hàm của hàm số tìm được có phải là nguyên hàm của hàm số đó trên đoạn lấy tích phân hay không? phép đặt biến mới trong phương pháp đổi biến số có nghĩa không? Phép biến đổi hàm số có tương đương không? vì thế trong quá trình tính tích phân học sinh thường mắc phải những sai lầm dẫn đến lời giải sai qua thực tế giảng dạy nhiều năm tôi nhận thấy rất rõ yếu điểm này của học sinh vì vậy tôi mạnh dạn đề xuất sáng kiến : “ Một số sai lầm thường gặp của học sinh khi tính tích phân”.
II.MỤC ĐÍCH NGHIÊN CỨU.
 Nhằm giúp học sinh khắc phục được những yếu điểm nêu trên từ đó đạt được kết quả cao khi giải bài toán tích phân nói riêng và đạt kết quả cao trong quá trình học tập nói chung.
III. ĐÔI TƯỢNG NGHIÊN CỨU.
-Học sinh : Trường THPT Triệu Sơn 6.
-GV: Giảng dạy bộ môn Toán.
-Phạm vi nghiên cứu: Tính tích phân thường gặp.
IV. PHƯƠNG PHÁP NGHIÊN CỨU.
+ Lựa chọn các ví dụ các bài tập cụ thể phân tích tỉ mỉ những sai lầm của học sinh vận dụng hoạt động năng lực tư duy và kỹ năng vận dụng kiến thức của học sinh để từ đó đưa ra lời giải đúng của bài toán.
+Thực nghiệm sư phạm
B: NỘI DUNG SÁNG KIẾN KINH NGHIỆM
I. CƠ SỞ LÍ LUẬN
Dựa trên nguyên tắc quá trình nhận thức của con người đi từ: “ cái sai đến cái gần đúng rồi mới đến khái niệm đúng”, các nguyên tắc dạy học và đặc điểm quá trình nhận thức của học sinh
II.THỰC TRẠNG CỦA VẤN ĐỀ.
Học sinh tính tích phân một cách máy móc theo định nghĩa,các tính chất và các phương pháp tính tích phân .
III.GIẢI PHÁP THỰC HIỆN.
Một số sai lầm của học sinh khi tính tích phân
Bài tập minh hoạ:
Bài 1: Tính tích phân: I = ;
* Sai lầm thường gặp: I = = =-=--1 = -
* Nguyên nhân sai lầm :
Hàm số y = không xác định tại x= -1 suy ra hàm số không liên tục trên nên không sử dụng được công thức newtơn – leibnitz như cách giải trên.
* Lời giải đúng
Hàm số y = không xác định tại x= -1 suy ra hàm số không liên tục trên do đó tích phân trên không tồn tại.
* Chú ý đối với học sinh:
Khi tính cần chú ý xem hàm số y=f(x) có liên tục trên không? nếu có thì áp dụng phương pháp đã học để tính tích phân đã cho còn nếu không thì kết luận ngay tích phân này không tồn tại.
* Một số bài tập tương tự: 
Tính các tích phân sau:
1/ .
2/.
3/
4/
Bài 2 :Tính tích phân: I = ; 
* Sai lầm thường gặp: Đặt t = tan thì dx = ;=
==d(t+1) = + c
 I = = = - 
do tankhông xác định nên tích phân trên không tồn tại
*Nguyên nhân sai lầm:
Đặt t = tan x tại x = thì tan không có nghĩa.
* Lời giải đúng:
I = = = tan.
* Chú ý đối với học sinh:
Đối với phương pháp đổi biến số khi đặt t = u(x) thì u(x) phải là một hàm số liên tục và có đạo hàm liên tục trên .
*Một số bài tập tương tự:
 Tính các tích phân sau:
1/ 
2/; 
Bài 3: Tính I = dx; 
* Sai lầm thường gặp:
I = dx =
* Nguyên nhân sai lầm:
Phép biến đổi với x là không tương đương.
* Lời giải đúng:
I = dx 
 =
 = -
* Chú ý đối với học sinh:
I = ta phải xét dấu hàm số f(x) trên rồi dùng tính chất tích phân tách I thành tổng các phân không chứa dấu giá trị tuyệt đối.
Một số bài tập tương tự: 
1/ I = dx ;
 2/ I = dx
3/ I = dx
4/ I = dx
Bài 4: Tính I = ;
* Sai lầm thường gặp:
I = 
* Nguyên nhân sai lầm :
Học sinh không học khái niệm arctanx trong sách giáo khoa hiện thời
* Lời giải đúng:
Đặt x+1 = tant 
với x=-1 thì t = 0
với x = 0 thì t = 
Khi đó I = 
* Chú ý đối với học sinh:
Các khái niệm arcsinx , arctanx không trình bày trong sách giáo khoa hiện thời. Học sinh có thể đọc thấy một số bài tập áp dụng khái niệm này trong một sách tham khảo, vì các sách này viết theo sách giáo khoa cũ (trước năm 2000). Từ năm 2000 đến nay do các khái niệm này không có trong sách giáo khoa nên học sinh không được áp dụng phương pháp này nữa. Vì vậy khi gặp tích phân dạng ta dùng phương pháp đổi biến số đặt t = tanx hoặc t = cotx ;
 thì đặt x = sint hoặc x = cost
*Một số bài tập tương tự:
1/ I = 
2/ I = 
3/ I =
Bài 5: 
Tính :I = 
*Suy luận sai lầm: Đặt x= sint , dx = costdt
Đổi cận: với x = 0 thì t = 0
với x= thì t = ?
* Nguyên nhân sai lầm:
Khi gặp tích phân của hàm số có chứa thì thường đặt x = sint nhưng đối với tích phân này sẽ gặp khó khăn khi đổi cận cụ thể với x = không tìm được chính xác t = ?
* Lời giải đúng:
Đặt t = dt = 
Đổi cận: với x = 0 thì t = 1; với x = thì t = 
 I =	=
* Chú ý đối với học sinh: Khi gặp tích phân của hàm số có chứa thì thường đặt x = sint hoặc gặp tích phân của hàm số có chứa 1+x2 thì đặt x = tant nhưng cần chú ý đến cận của tích phân đó nếu cận là giá trị lượng giác của góc đặc biệt thì mới làm được theo phương pháp này còn nếu không thì phải nghĩ đếnphương pháp khác.
*Một số bài tập tương tự: 
1/ tính I = 
2/tính I = 
Bài 6: tính I = ;
* Sai lầm thường mắc: I = 
Đặt t = x+
Đổi cận với x = -1 thì t = -2 ; với x=1 thì t=2;
I ===(ln-ln)
 = ln 
* Nguyên nhân sai lầm: là sai vì trong chứa x = 0 nên không thể chia cả tử cả mẫu cho x = 0 được
* Lời giải đúng: 
xét hàm số F(x) = 
 F’(x) = 
Do đó I = = 
*Chú ý đối với học sinh: Khi tính tích phân cần chia cả tử cả mẫu của hàm số cho x cần để ý rằng trong đoạn lấy tích phân phải không chứa điểm x = 0 .
IV.HIỆU QUẢ CỦA SÁNG KIẾN KINH NGHIỆM:
1.Kết quả từ thực tiễn:
Ban đầu học sinh gặp khó khăn nhất định trong việc giải những dạng tích phân như đã nêu.Tuy nhiên giáo viên cần hướng dẫn học sinh tỉ mỉ cách phân tích một bài toán tích phân từ hàm số dưới dấu tích phân,cận của tích phân để lựa chọn phương pháp phù hợp trên cơ sở giáo viên đưa ra những sai lầm mà học sinh thường mắc phải trong quá trình suy luận,trong các bước tính tích phân này rồi từ đó hướng các em đi đến lời giải đúng.
Sau khi hướng dẫn học sinh như trên và yêu cầu học sinh giải một số bài tập tích phân trong sách giáo khoa Giải Tích Lớp 12 và một số bài trong các đề thi tuyển sinh vào đại học,cao đẳng và trung học chuyên nghiệp của các năm trước thì các em đã thận trọng trong khi tìm và trình bày lời giải và đã giải được một lượng lớn bài tập đó.
2/Kết quả thực nghiệm:
Sáng kiến được áp dụng trong năm học 2015-2016 
Bài kiểm tra trên hai đối tượng lớp 12A2(43học sinh) không áp dụng sáng kiến và 12A4(44 học sinh) áp dụng sáng kiến như sau:
 xếp loại
đối tượng
giỏi
khá
tb
yếu
12A4
50%
40%
10%
0%
12A2
0%
0%
40%
60%
Sau khi thực hiện sáng kiến học sinh học tập rất tích cực và hứng thú đặc biệt là khi giải bài toán tích phân các em tính tích phân rất thận trọng và hiểu bản chất của vấn đề chứ không tính rập khuôn một cách máy móc như trước, đó là việc thể hiện việc phát huy tính tích cực, chủ động, sáng tạo của học sinh.
C.KẾT LUẬN – KIẾN NGHỊ
I. KẾT LUẬN:
Nghiên cứu, phân tích một số sai lầm của học sinh khi tính tích phân có ý nghĩa rất lớn trong quá trình dạy học vì khi áp dụng sáng kiến này sẽ giúp học sinh nhìn thấy được những điểm yếu và những hiểu biết chưa thật thấu đáo của mình về vấn đề này từ đó phát huy ở học sinh tư duy độc lập, năng lực suy nghĩ tích cực chủ động củng cố trau rồi thêm kiến thức về tính tích phân từ đó làm chủ được kiến thức, đạt được kết quả cao trong quá trình học tập và các kỳ thi tuyển sinh vào các trường đại học, cao đẳng , THCN
II. KIẾN NGHỊ:
	Hiện nay nhà trường đã có một số sách tham khảo tuy nhiên chưa có một sách tham khảo nào viết về sai lầm của học sinh khi giải toán. Vì vậy nhà trường cần quan tâm hơn nữa về việc trang bị thêm sách tham khảo loại này để học sinh được tìm tòi về những sai lầm thường mắc khi giải toán để các em có thể tránh được những sai lầm đó trong khi làm bài tập .
 XÁC NHẬN CỦA HIỆU TRƯỞNG 
 Thanh Hóa, ngày 30 tháng 4 năm 2017
 Tôi xin cam đoan đây là SKKN của
 mình viết không sao chép nội dung
 của người khác
Lê Thị Hương 
TÀI LIỆU THAM KHẢO 
1. Kiến thức cơ bản giải tích 12 ( Phan Văn Đức- Đỗ Quang Minh – Nguyễn Thanh Sơn – Lê Văn Trường – NXB ĐH Quốc gia thành phố HCM - 2002)
2. Phương pháp giải toán Tích phân và Giải tích tổ hợp ( Nguyễn Cam – NXB Trẻ )
3. Phương pháp giải toán Tích phân (Trần Đức Huyên – Trần Chí Trung – NXB Giáo Dục)
4. Sách giáo khoa Giải tích 12 (Ngô Thúc Lanh Chủ biên – NXB GD – 2000)
5. Phương pháp giải toán Tích phân ( Lê Hồng Đức – Lê Bích Ngọc – NXB Hà Nội – 2005)
6. Sai lầm thường gặp và các sáng tạo khi giải toán ( Trần Phương và Nguyễn Đức Tấn – NXB Hà Nội – 2004)
DANH MỤC
SÁNG KIẾN KINH NGHIỆM ĐÃ ĐƯỢC HỘI ĐỒNG SÁNG KIẾN KINH NGHIỆM NGÀNH GIÁO DỤC VÀ ĐÀO TẠO HUYỆN, TỈNH VÀ CÁC CẤP CAO HƠN XẾP LOẠI TỪ C TRỞ LÊN
Họ và tên tác giả:Lê Thị Hương
Chức vụ và đơn vị công tác:Giáo viên Trường THPT Triệu Sơn 6.
TT
Tên đề tài SKKN
Cấp đánh giá xếp loại
(Ngành GD cấp huyện/tỉnh; Tỉnh...)
Kết quả đánh giá xếp loại
(A, B, hoặc C)
Năm học đánh giá xếp loại
Nhìn nhận các bài toán bất đẳng thức bằng “ Con mắt” lượng giác.
Tỉnh
C
2013-2014
----------------------------------------------------

Tài liệu đính kèm:

  • docsang_kien_kinh_nghiem_mot_so_sai_lam_thuong_gap_cua_hoc_sinh.doc