SKKN Một số kỹ thuật sử dụng máy tính cầm tay định hướng giải bài toán tìm GTLN, GTNN

SKKN Một số kỹ thuật sử dụng máy tính cầm tay định hướng giải bài toán tìm GTLN, GTNN

 Những năm gần đây, trong kì thi Đại học, Cao đẳng hay kì thi Trung học phổ thông Quốc gia, các bài toán tìm giá trị lớn nhất, giá trị nhỏ nhất thường xuyên được đưa về dưới dạng hàm số một biến. Đó là kỹ thuật kết hợp bất đẳng thức cổ điển và phương pháp tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số bằng cách sử dụng đạo hàm kết hợp với lập bảng biến thiên. Phương pháp này có bốn bước quan trọng:

• Đưa biểu thức về một biến duy nhất.

• Tìm điều kiện cho biến.

• Đặt biểu thức dưới dạng hàm số một biến và lập bảng biến thiên để tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số.

• Kết luận giá trị lớn nhất, giá trị nhỏ nhất và điều kiện để dấu bằng xảy ra.

 Tuy nhiên bài toán Bất đẳng thức, Giá trị lớn nhất, Giá trị nhỏ nhất luôn là một thử thách lớn đối với học sinh. Đứng trước mỗi bài toán này các em thường lúng túng không biết định hướng, không biết bắt đầu từ đâu.Và nhiều khi những cách giải thiếu tự nhiên của thầy cô càng khiến học sinh sợ và không dám tiếp cận đến bài toán khó này.

 Có ba câu hỏi học sinh luôn đưa ra trước mỗi bài toán tìm giá trị lớn nhât, giá trị nhỏ nhất của một biểu thức: Dấu bằng xảy ra khi nào (Điểm rơi)? Làm thế nào để đưa về một biến? Khi đã đưa biểu thức về hàm số một biến thì GTLN-GTNN của hàm số là bao nhiêu? Và để trả lời 3 câu hỏi này cho học sinh một cách thuyết phục nhất, tôi xin trình bày sáng kiến kinh nghiệm “MỘT SỐ KỸ THUẬT SỬ DỤNG MÁY TÍNH CẦM TAY ĐỊNH HƯỚNG GIẢI BÀI TOÁN TÌM GTLN, GTNN”.

 

doc 21 trang thuychi01 6784
Bạn đang xem 20 trang mẫu của tài liệu "SKKN Một số kỹ thuật sử dụng máy tính cầm tay định hướng giải bài toán tìm GTLN, GTNN", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
SỞ GIÁO DỤC VÀ ĐÀO TẠO THANH HÓA
TRƯỜNG THPT ĐÀO DUY TỪ
SÁNG KIẾN KINH NGHIỆM
MỘT SỐ KỸ THUẬT SỬ DỤNG MÁY TÍNH CẦM TAY
ĐỊNH HƯỚNG GIẢI BÀI TOÁN TÌM GTLN, GTNN 
 Người thực hiện: Nguyễn Việt Dũng
 Chức vụ: Giáo viên
 SKKN thuộc môn: Toán học
THANH HÓA, NĂM 2016
MỤC LỤC
Mở đầu
Lí do chọn đề tài.
 Những năm gần đây, trong kì thi Đại học, Cao đẳng hay kì thi Trung học phổ thông Quốc gia, các bài toán tìm giá trị lớn nhất, giá trị nhỏ nhất thường xuyên được đưa về dưới dạng hàm số một biến. Đó là kỹ thuật kết hợp bất đẳng thức cổ điển và phương pháp tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số bằng cách sử dụng đạo hàm kết hợp với lập bảng biến thiên. Phương pháp này có bốn bước quan trọng:
Đưa biểu thức về một biến duy nhất.
Tìm điều kiện cho biến.
Đặt biểu thức dưới dạng hàm số một biến và lập bảng biến thiên để tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số.
Kết luận giá trị lớn nhất, giá trị nhỏ nhất và điều kiện để dấu bằng xảy ra.
 Tuy nhiên bài toán Bất đẳng thức, Giá trị lớn nhất, Giá trị nhỏ nhất luôn là một thử thách lớn đối với học sinh. Đứng trước mỗi bài toán này các em thường lúng túng không biết định hướng, không biết bắt đầu từ đâu.Và nhiều khi những cách giải thiếu tự nhiên của thầy cô càng khiến học sinh sợ và không dám tiếp cận đến bài toán khó này.
 Có ba câu hỏi học sinh luôn đưa ra trước mỗi bài toán tìm giá trị lớn nhât, giá trị nhỏ nhất của một biểu thức: Dấu bằng xảy ra khi nào (Điểm rơi)? Làm thế nào để đưa về một biến? Khi đã đưa biểu thức về hàm số một biến thì GTLN-GTNN của hàm số là bao nhiêu? Và để trả lời 3 câu hỏi này cho học sinh một cách thuyết phục nhất, tôi xin trình bày sáng kiến kinh nghiệm “MỘT SỐ KỸ THUẬT SỬ DỤNG MÁY TÍNH CẦM TAY ĐỊNH HƯỚNG GIẢI BÀI TOÁN TÌM GTLN, GTNN”.
 Với sáng kiến này và nhờ sự trợ giúp của máy tính cầm tay, tôi hy vọng học sinh sẽ tư duy tốt hơn, có tầm nhìn bao quát và có trong tay nhiều cách giải khác nhau, từ đó có thể hoàn thành tốt các bài toán tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức.
Mục đích nghiên cứu.
 Khi giải toán tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức, mục đích của chúng ta là tìm một cách giải logic để tìm ra sự biến thiên của hàm số từ đó kết dự đoán GTLN-GTNN đạt được, cho nên máy tính chỉ được sử dụng như một công cụ hỗ trợ các tính toán phức tạp và dự đoán chứ không phải máy tính sẽ thực hiện giải các bài toán đưa ra. Tuy nhiên nếu biết khai thác triệt để các tính năng của máy tính thì ta không chỉ tìm được lời giải cho bài toán mà còn tìm được nhiều cách giải khác nhau, đồng thời có thể mở rộng và làm mới bài toán.
Đối tượng nghiên cứu.
 Đối tượng nghiên cứu là các bài toán tìm GTNN, GTLN trong các đề thi Đại học trong những năm gần đây, từ đó xây dựng định hướng bao quát để tìm tòi lời giải trong các bài về tìm GTLN, GTNN khác.
Phương pháp nghiên cứu.
 Dùng các chức năng của máy tính cầm tay để tìm điểm rơi ( điểm để biểu thức đạt GTLN hay GTNN), tìm quy luật tăng giảm của hàm số,... từ đó định hướng, tìm tòi lời giải cho Bài toán tìm GTLN, GTNN.
Nội dung Sáng kiến kinh nghiệm.
Cơ sở lí luận.
Một số tính năng của máy tính thường được sử dụng:
Phím CALC:
Khi nhập biểu thức đại số chứa biến, phím CALC sẽ hỏi giá trị biến và tính ra giá trị biểu thích ứng với giá trị biến ta vừa nhập. Phím chức năng này cho phép ta tính một biểu thức cồng kềnh với nhiều giá trị khác nhau chỉ với một lần nhập, tiết kiệm khoảng thời gian đáng kể.
Phím SHIFT+ CALC :
Nguyên tắc hoạt động của chức năng này là khi ta nhập một giá trị bất kì thì màn hình hiển thị ”X=?” thì bộ xử lý sẽ quay một hình tròn có tâm là điểm ta vừa nhập trên trục hoành, với bán kính lớn dần. Khi gặp giá trị gần nhất thỏa mãn thì máy sẽ dừng lại và hiển thị giá trị đó dưới dạng phân số tối giản hoặc số thập phân. Nếu trong một thời gian nhất định mà máy vẫn chưa tìm được nghiệm thì máy sẽ hiển thị giá trị gần nhất máy tìm được thỏa mãn phương trình với sai số hai vế là thấp nhất. L-R ở hàng thứ hai trên màn hình chính là sai số ở hai vế (thông thường sai số này rất bé khoảng trở xuống).
Chức năng TABLE (MODE+ 7):
Chức năng này cho phép hiển thị đồng thời các kết quả của một biểu thức trong đó các giá trị biến ta gán là cấp số cộng. Chức năng này cho phép ta nhìn tổng thể các giá trị của biểu thức, thuận lợi cho việc sử dụng tính liên tục và xác định các khoảng đơn điệu đồng thời tìm cực trị của hàm số.
Chức năng tính đạo hàm (SHIFT+ ):
Chức năng này dùng để tính giá trị của tại giá trị với mục đích xác định có phải cực trị của hàm số hay không? Nếu hàm số đạt cực trị tại thì . 
Thực trạng vấn đề trước khi áp dụng Sáng kiến kinh nghiệm.
 Khi đứng trước một bài toán tìm GTLN, GTNN học sinh thường mất định hướng không biết bắt đầu từ đâu hoặc khi đọc lời giải không biết tại sao người giải lại đưa ra đánh giá đó. Khi bắt tay vào làm một bài toán về GTLN, GTNN học sinh thường phải tìm các đánh giá phụ để đưa bài toán về dạng đơn giản hơn. Tuy nhiên nếu không tìm được điểm rơi hoặc tìm sai điểm rơi của bài toán thì mọi đánh giá có thể dẫn đến bế tắc. Khi đó học sinh sẽ rơi vào vòng luẩn quẩn không tìm được kết quả bài toán hoặc sẽ đưa ra các đánh giá ngược. 
 Để giải quyết các vấn đề nói tên học sinh phải trả lời được: 
 + Dấu bằng xảy ra khi nào (Điểm rơi)? 
 + Làm thế nào để đưa về một biến?
 + Khi đã đưa biểu thức về hàm số một biến thì GTLN-GTNN của hàm số là bao nhiêu? 
Giải pháp dùng máy tính cầm tay định hướng, tìm tòi lời giải bài toán tìm GTLN, GTNN.
 Để có cái nhìn khái quát về phương pháp, tôi xét ví dụ là các bài toán tìm giá trị lớn nhất, giá trị nhỏ nhất trong các đề thi chính thức của Bộ Giáo dục và Đào Tạo những năm gần đây. Trong quá trình phân tích và giải mỗi bài toán tôi sẽ kèm theo các kỹ thuật sử dụng máy tính cầm tay CASIO FX570VN-PLUS.
(các máy tính cầm tay khác có cùng chức năng cũng áp dụng tương tự).
 Các kỹ thuật sử dụng máy tính cầm tay có mục đích hỗ trợ và giúp cho học sinh định hướng cũng như có cái nhìn đơn giản, tư duy đúng đắn hơn khi tiếp cận một bài toán tìm giá trị lớn nhất, giá trị nhỏ nhất.
VÍ DỤ
Ví dụ 1:Cho a, b, c là các số thực thuộc đoạn [1;3] và thỏa mãn điều kiện a+b+c=6. Tìm giá trị lớn nhất của biểu thức:
Đề thi THPT Quốc Gia 2015.
ĐỊNH HƯỚNG ĐIỂM RƠI
Do các biến có điều kiện nằm trong khoảng chặn nên khả năng điểm rơi xảy ra khi có ít nhất một biến nằm ở biên. Biểu thức P đối xứng 3 biến nên vai trò a, b, c như nhau, ta cố định a=1→ b+c=5→ c=5-b. Thay vào P:
Ta sử dụng chức năng TABLE của máy tính Casio
START =2
END =3
STEP =0.1
Dựa vào bảng giá trị ta thấy hàm số đạt giá trị lớn nhất là tại X=2 và X=3.
X
F(X)
2
14.545
2.1
14.537
2.2
14.531
2.3
14.527
2.4
14.525
2.5
14.525
2.6
14.525
2.7
14.527
2.8
14.531
2.9
14.537
3
14.545
Với giá trị trên thì điểm rơi của bài toán là a=1, b=3, c=2 và các hoán vị.
Lời giải:
Do nên ta có:
Lấy (2)-(1) ta được: 
Áp dụng bđt Cauchy: .
Mặtkhác: .
Do đó 
Đặt 
ĐỊNH HƯỚNG HÀM SỐ
Ta sử dụng chức năng TABLE của máy tính Casio:
START =11
END =12
STEP =0.1
Dựa vào bảng giá trị ta thấy hàm số đạt giá trị lớn nhất tại X=11 và hàm số đơn điệu giảm trên [11;12]. Ta định hướng chứng minh hàm số nghịch biến trên [11;12]
X
F(X)
11
14.545
11.1
14.536
11.2
14.528
11.3
14.521
11.4
14.515
11.5
14.51
11.6
14.506
11.7
14.503
11.8
14.501
11.9
14.5
12
14.5
Ta có nên hàm số nghịch biến trên [11;12].
Vậy .Dấu bằng xảy ra khi a=1, b=2, c=3 và các hoán vị. Vậy 
Ví dụ 2: Cho x, y, z là các số thực không âm thỏa mãn điều kiện . Tìm giá trị lớn nhất của biểu thức:
Đề thi tuyển sinh Đại Học khối A-2014.
ĐỊNH HƯỚNG ĐIỂM RƠI
Do P không đối xứng nhưng đối xứng theo hai biến y, z. Ta xét các trường hợp sau:
TH1: Cố định , thay vào P ta được:
Ta sử dụng chức năng TABLE của máy tính Casio
START =0
END =1.5
STEP =0.2
Dựa vào bảng giá trị ta thấy hàm số đơn điệu giảm trên và đạt giá trị lớn nhất tại X=0, xấp xỉ 0.4746
X
F(X)
0
0.4746
0.2
0.4744
0.4
0.4698
0.6
0.4628
0.8
0.4543
1
0.4444
1.2
0.4304
1.4
0.3837
1.5
Với trường hợp trên thì điểm rơi của bài toán là 
TH2: Cố định z=0 (do bài toán đối xứng theo hai biến y, z nên ta không cần xét trường hợp y=0) , thay vào P ta được:
Ta sử dụng chức năng TABLE của máy tính Casio
START =0
END =1.5
STEP =0.2
Dựa vào bảng giá trị ta thấy hàm số đạt giá trị lớn nhất tại X=1. Ta kiểm tra xem X=1 có phải cực đại không. Ta sử dụng chức năng d/dx của máy tính Casio
nên X=1 là cực đại. Vậy giá trị lớn nhất trong trường hợp này là 5/9 khi x=1, y=1, z=0
X
F(X)
0
0.4746
0.2
0.4596
0.4
0.4835
0.6
0.5171
0.8
0.5443
1
0.5555
1.2
0.5383
1.4
0.4153
1.5
 Kết hợp hai trường hợp ta thấy điểm rơi của bài toán là x=1, y=1, z=0 hoặc x=1, y=0, z=1.
Lời giải:
Ta có 
và
Do đó 
Mặt khác 
Xét hàm số 
BBT: 
T
0 2 
f’(t)
 + 0 -
f(t)
 5/9
 0 
Vậy 
(Dấu bằng xảy ra khi x=y=1, z=0 hoặc x=z=1, y=0).
Vậy 
Nhận xét: Khi bài toán cho các biến không âm thì điểm rơi thường xảy ra khi ít nhất một biến bằng 0, các em học sinh có thể xem đây như một định hướng để giải toán.
Ví dụ 3: Cho a, b, c là các số thực không âm thỏa mãn điều kiện (a+b)c>0. Tìm giá trị nhỏ nhất của biểu thức:
Đề thi tuyển sinh Đại Học khối B-2014.
ĐỊNH HƯỚNG ĐIỂM RƠI
Do bài toán đối xứng theo hai biến a, b mà (a+b)c>0 nên điểm rơi không thể là a=b=0 hoặc c=0 nên điểm rơi khi một trong hai biến a hoặc b bằng 0. Khi đó:
Với giá trị trên thì điểm rơi của bài toán là a=c, b=0 hoặc a=0, b=c.
Lời giải:
Áp dụng bất đẳng thức Cauchy:
Tương tự: 
Do đó .
Đặt 
ĐỊNH HƯỚNG HÀM SỐ
Ta sử dụng chức năng TABLE của máy tính Casio:
START =0
END =5
STEP =0.5
 Dựa vào bảng giá trị ta thấy hàm số có cực tiểu và đạt giá trị nhỏnhất tại X=1. 
Ta định hướng tính đạo hàm của hàm số để lập bảng biến thiên của hàm số.
X
F(X)
0
2
0.5
1.5833
1
1.5
1.5
1.55
2
1.666
2.5
1.8214
3
2
3.5
2.1944
4
2.4
4.5
2.6136
5
2.833
 Xét hàm số Ta có 
BBT: 
 t
0 1 
 f’(t)
 - 0 +
 f(t)
0 
Vậy 
Đẳng thức xảy ra khi a=0, b=c hoặc a=c, b=0.
Vậy 
Ví dụ 4: Cho a, b, c là các số thực dương. Tìm giá trị lớn nhất của biểu thức:
Đề thi tuyển sinh Đại Học khối B-2013.
ĐỊNH HƯỚNG ĐIỂM RƠI	
Do biểu thức P đối xứng theo hai biến a, b nên ta dự đoán điểm rơi khi a=b
Lời giải:
Áp dụng bất đẳng thức Cauchy:
Mặt khác: 
Do đó 
Đặt 
ĐỊNH HƯỚNG HÀM SỐ
Ta sử dụng chức năng TABLE của máy tính Casio:
START =2.5
END =7
STEP =0.5
Do bài toán không có điều kiện nên để hàm số có giá trị lớn nhất thì hàm số phải đạt cực đại và đạt giá trị lớn nhất tại điểm cực đại.
Dựa vào bẳng giá trị ta thấy hàm số đạt cực đại trong khoảng (3.5;4) và đạt giá trị lớn nhất tại đó. Ta dự đoán X=4 là điểm cực đại của hàm số.
Để xác nhận, ta nhập vào máy tính Casio được:
X
F(X)
2.5
-0.4
3
0.4333
3.5
0.5974
4
0.625
4.5
0.6119
5
0.5857
5.5
0.5558
6
0.526
6.5
0.4977
7
0.4714
Điểm rơi của bài toán là a=b=c=2.
Xét hàm số 
Ta có 
BBT: 
 t
2 4 
 f’(t)
+ 0 -
 f(t)
 0 
Vậy .
Dấu bằng xảy ra khi .
 khi .
Ví dụ 5: Cho a, b, c là các số thực dương thỏa mãn điều kiện (a+c)(b+c)=4. Tìm giá trị nhỏ nhất của biểu thức:
Đề thi tuyển sinh Đại Học khối A-2013.
ĐỊNH HƯỚNG ĐIỂM RƠI
Biểu thức và điều kiện đối xứng theo hai biến a, b nên điểm rơi khi a=b, thay vào điều kiện ta được điểm rơi là a=b=c=3.
Vì biểu thức và điều kiện là các biểu thức đẳng cấp nên ta định hướng đặt ẩn phụ để giảm biến.
Lời giải: 
Đặt Ta có 
Áp dụng bất đẳng thức Cauchy: 
Áp dụng bất đẳng thức ta có
Mặt khác: 
Do đó 
Đặt . Xét hàm số 
ĐỊNH HƯỚNG HÀM SỐ
Ta sử dụng chức năng TABLE của máy tính Casio
START =2
END =3
STEP =0.1
Dựa vào bảng giá trị ta thấy hàm số đơn điệu tăng và hàm số đạt giá trị nhỏ nhất tại X=2
X
F(X)
2
-0.414
2.1
-0.324
2.2
-0.154
2.3
0.0988
2.4
0.4439
2.5
0.889
2.6
1.444
2.7
2.1201
2.8
2.9294
2.9
3.8847
3
5
Tuy nhiên biểu thức hàm số rất cồng kềnh với số mũ lớn nên nếu ta đạo hàm và chứng minh trực tiếp sẽ rất khó khăn để chỉ ra sự đơn điệu. 
Ta sử dụng chức năng TABLE của máy tính Casio với:
START =2
END =3
STEP =0.1
X
F(X)
2
2.625
2.1
3.2106
2.2
3.8847
2.3
4.6545
2.4
5.5272
2.5
6.5103
2.6
7.6109
2.7
8.8362
2.8
10.193
2.9
11.69
3
13.333
Ta sử dụng chức năng TABLE của máy tính Casio với:
START =2
END =3
STEP =0.1
X
F(X)
2
2.1213
2.1
1.9188
2.2
1.777
2.3
1.6731
2.4
1.5921
2.5
1.5275
2.6
1.4746
2.7
1.4305
2.8
1.3931
2.9
1.3611
3
1.3333
Dựa vào hai bảng giá trị trên ta thấy , ta định hướng đánh giá thông qua giá trị . 
Ta có (đúng với mọi t>2)
Và (đúng với mọi t >2)
Do đó 
Hàm số đồng biến trên 
BÀI TẬP ÁP DỤNG:
Bài 1: Cho các số thực dương thỏa mãn . Tìm giá trị lớn nhất của biểu thức 
ĐS: khi 
Bài 2: Cho là các số thực không âm thỏa mãn: . Tìm giá trị lớn nhất của biểu thức: 
ĐS: khi 
Bài 3: Cho là các số thực không âm thỏa mãn: . Tìm giá trị nhỏ nhất và lớn nhất của biểu thức: 
ĐS: khi khi .
Bài 4: Cho các số thực thỏa mãn: Tìm giá trị nhỏ nhất của biểu thức: 
ĐS: .
Bài 5: Cho các số thực dương thỏa mãn:. Tìm giá trị nhỏ nhất của biểu thức: 
ĐS: khi 
Bài 6: Cho các số thực dương thỏa mãn: . Tìm giá trị nhỏ nhất của biểu thức: 
ĐS: khi 
Bài 7: Cho các số thực dương thỏa mãn: . Tìm giá trị nhỏ nhất của biểu thức: 
ĐS: khi 
Bài 8: Cho các số thực dương thỏa mãn: Tìm giá trị nhỏ nhất của biểu thức: 
ĐS: khi 
Bài 9: Cho các số thực dương thỏa mãn: Tìm giá trị lớn nhất của biểu thức: 
ĐS: khi 
Bài 10: Cho các số thực dương thỏa mãn: Tìm giá trị lớn nhất của biểu thức: 
ĐS: khi 
Bài 11: Cho các số thực dương thỏa mãn: Tìm giá trị lớn nhất của biểu thức: 
ĐS: khi 
Bài 12: Cho các số thực không âm thỏa mãn: . Tìm giá trị nhỏ nhất của biểu thức: 
ĐS: khi hoặc hoặc .
Hiệu quả của Sáng kiến kinh nghiệm.
 Trong khuôn khổ của một bài viết tôi chỉ đưa ra 5 ví dụ điển hình. Từ 5 ví dụ này dưới sự hướng dẫn của thầy giáo, học sinh tìm tòi các lời giải của các bài toán. Sau khi giải được mỗi bài toán, tôi hướng dẫn học trò thay đổi cách tiếp cận bài toán, để đưa ra được sự so sánh về tính khả thi và hiệu quả của phương pháp đó. Trong quá trình tìm tòi học sinh không những phấn chấn, tự giác tiếp nhận các kiến thức và kỹ năng giải các bài toán dạng này mà còn hình thành được cho các em cách nhìn nhận cách đoán nhận tính chất của hàm qua các điểm rời rạc, từ đó đưa ra phương hướng đúng đắn để giải bài toán tìm GTLN, GTNN của biểu thức nhiều biến theo phương pháp hàm số.
 Trong 2 lớp 12C1, 12C2 tôi dạy năm nay, tôi chọn một nhóm 20 học sinh khá, giỏi để dạy và cho làm bài tập áp dụng. Kết quả số học sinh giải được như sau:
Lớp
Sĩ số
Số học sinh giải được
Tỉ lệ % học sinh giải được
12C1
12
12 bài (5 hs)
9 bài (4 hs)
7 bài (3 hs)
41,7%
33,3%
25%
12C2
8
12 bài (3 hs)
9 bài (3 hs)
6 bài (2 hs)
37,5%
37,5%
25%
Kết luận
Kết luận.
 Bất đẳng thức luôn là một lĩnh vực khó trong toán học nhưng nó không phải là một thử thách quá lớn không thể vượt qua mà đơn thuần nó là một bài toán khó. Nhiệm vụ của thầy cô là định hướng cho các em để có thể tìm ra lời giải đáp cho vấn đề khó nhằn này. Từ đó động viên các em tìm tòi, sáng tạo ra những bất đẳng thức mới, những phương pháp giải mới, phù hợp với mục tiêu dạy học tích cực mà Bộ Giáo dục đề ra.
 Trên đây là một số kết quả mà tôi đã đạt được khi tìm tòi một phương án giải quyết bài toán tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức. Bản thân tôi thấy được vai trò rất lớn của việc sử dụng máy tính cầm tay đối với học sinh hiện nay. Tôi mong rằng trong thời gian tới tôi sẽ tiếp tục hướng nghiên cứu của mình và mong nhận được sự đóng góp ý kiến của đồng nghiệp, học sinh để cho những tiết học môn Toán học càng ngày càng bổ ích và có ý nghĩa hơn.
 Với những hiểu biết còn hạn chế của bản thân, tôi rất mong những ý kiến góp ý, những bổ xung để các kỹ năng dùng máy tính cầm tay khi giải bài toán tìm GTLN, GTNN ngày càng đầy đủ và hoàn thiện hơn. Tôi xin chân thành cảm ơn!
Kiến nghị.
 Trong thực hành giải toán, việc sử dụng máy tính cầm tay rất quen thuộc với học sinh, nhưng làm thể nào để khai thác thế mạnh của nó trên cở sở kiến thức phổ thông là một lĩnh vực chưa được nhiều giáo viên và học sinh để ý. Qua sáng kiến kinh nghiệm này tôi muốn nhân rộng việc dạy cho học sinh các kỹ năng sử dụng máy tính cầm tay trong trường THPT, đặc biệt trong giải toán. Để học sinh được trang bị các kĩ năng sử dụng máy tính cầm tay giúp việc học Toán được hiệu quả hơn, tôi đề nghị các nhà trường THPT ngoài các tiết dạy theo PPCT, nên tổ chức các buổi học ngoại khóa dưới dạng các chuyên đề cho học sinh . 
XÁC NHẬN CỦA THỦ TRƯỞNG ĐƠN VỊ
Thanh Hóa, ngày 20 tháng 5 năm 2016
Tôi xin cam đoan đây là SKKN của mình viết, không sao chép nội dung của người khác
 Nguyễn Việt Dũng
TÀI LIỆU THAM KHẢO
Sách giáo khoa Giải tích 12 ( NXB Giáo dục năm 2010).
Các đề thi tuyển sinh Đại học, Đề thi THPT Quốc gia của Bộ Giáo dục & Đào tạo.
Các đề thi thử THPT Quốc gia năm 2015 và 2016 của các trường THPT trên toàn quốc.

Tài liệu đính kèm:

  • docskkn_mot_so_ky_thuat_su_dung_may_tinh_cam_tay_dinh_huong_gia.doc