SKKN Giúp học sinh lớp 12 học tốt phần ứng dụng tích phân tính diện tích hình phẳng
Vấn đề diện tích của các hình quen thuộc như tam giác, tứ giác, ngũ giác, lục giác, gọi chung là đa giác học sinh đều đã biết công thức tính diện tích từ các lớp dưới . . Đây là một vấn đề rất thực tế nhưng để học tốt nó vốn không đơn giản đối với các học sinh có tư duy hình học yếu, đặc biệt là tư duy cụ thể hoá, trừu tượng hoá.Việc dạy và học các vấn đề này ở chương trình toán lớp dưới vốn đã gặp rất nhều khó khăn.
Do đó khi học về vấn đề mới: vấn đề diện tích của các hình phẳng, ở chương trình giải tích 12 học sinh gặp rất nhiều khó khăn. Hầu hết các em học sinh thường có cảm giác “sợ” bài toán tính diện tích hình phẳng. Khi học vấn đề này nhìn chung các em thường vận dụng công thức một cách máy móc chưa có sự phân tích, thiếu tư duy thực tế và trực quan nên các em hay bị nhầm lẫn, học không giải được, đặc biệt là những bài toán cần phải có hình vẽ để “chia nhỏ” diện tích mới tính được. Thêm vào đó trong sách giáo khoa cũng như các sách tham khảo có rất ít ví dụ minh hoạ một cách chi tiết để giúp học sinh học tập và khắc phục “những sai lầm đó”. Càng khó khăn hơn cho những học sinh có kỹ năng tính tích phân còn yếu và kỹ năng “đọc đồ thị” còn hạn chế.
Vì vậy tôi chọn đề tài sáng kiến kinh nghiệm với tên là: “ GIÚP HỌC SINH LỚP 12 HỌC TỐT PHẦN ỨNG DỤNG TÍCH PHÂN TÍNH DIỆN TÍCH HÌNH PHẲNG”
SỞ GIÁO DỤC VÀ ĐÀO TẠO THANH HOÁ TRUNG TÂM GDNN – GDTX THỌ XUÂN SÁNG KIẾN KINH NGHIỆM TÊN ĐỀ TÀI GIÚP HỌC SINH LỚP 12 HỌC TỐT PHẦN ỨNG DỤNG TÍCH PHÂN TÍNH DIỆN TÍCH HÌNH PHẲNG Người thực hiện: Mai Phương Thảo Chức vụ: Giáo viên SKKN thuộc lĩnh mực (môn): Toán học THANH HOÁ NĂM 2019 MỤC LỤC Trang PHẦN I MỞ ĐẦU 1. Lý do chọn đề tài 1 2. Mục đích của đề tài ...... 1 3. Đối tượng nghiên cứu ... 1 4. Phương pháp nghiên cứu 1 PHẦN II NỘI DUNG SÁNG KIẾN KINH NGHIỆM 1. Cơ sở lý luận của sáng kiến kinh nghiệm 3 2. Thực trạng của vấn đề trước khi áp dụng sáng kiến kinh nghiệm .. 3 3. Diện tích hình phẳng 3 3.1. Hình phẳng giới hạn bởi một đồ thị hàm số và trục hoành ... 3 3.2. Hình phẳng được giới hạn bởi hai đồ thị hàm số .................. 11 4. Hiệu quả đạt được sau khi áp dụng SKKN 17 PHẦN III: KẾT LUẬN VÀ KIẾN NGHỊ 1. Kết luận 18 2. Kiến nghị 18 Tài liệu tham khảo 19 PHẦN I: MỞ ĐẦU 1. Lí do chọn đề tài: Vấn đề diện tích của các hình quen thuộc như tam giác, tứ giác, ngũ giác, lục giác, gọi chung là đa giác học sinh đều đã biết công thức tính diện tích từ các lớp dưới . . Đây là một vấn đề rất thực tế nhưng để học tốt nó vốn không đơn giản đối với các học sinh có tư duy hình học yếu, đặc biệt là tư duy cụ thể hoá, trừu tượng hoá.Việc dạy và học các vấn đề này ở chương trình toán lớp dưới vốn đã gặp rất nhều khó khăn. Do đó khi học về vấn đề mới: vấn đề diện tích của các hình phẳng, ở chương trình giải tích 12 học sinh gặp rất nhiều khó khăn. Hầu hết các em học sinh thường có cảm giác “sợ” bài toán tính diện tích hình phẳng. Khi học vấn đề này nhìn chung các em thường vận dụng công thức một cách máy móc chưa có sự phân tích, thiếu tư duy thực tế và trực quan nên các em hay bị nhầm lẫn, học không giải được, đặc biệt là những bài toán cần phải có hình vẽ để “chia nhỏ” diện tích mới tính được. Thêm vào đó trong sách giáo khoa cũng như các sách tham khảo có rất ít ví dụ minh hoạ một cách chi tiết để giúp học sinh học tập và khắc phục “những sai lầm đó”. Càng khó khăn hơn cho những học sinh có kỹ năng tính tích phân còn yếu và kỹ năng “đọc đồ thị” còn hạn chế. Vì vậy tôi chọn đề tài sáng kiến kinh nghiệm với tên là: “ GIÚP HỌC SINH LỚP 12 HỌC TỐT PHẦN ỨNG DỤNG TÍCH PHÂN TÍNH DIỆN TÍCH HÌNH PHẲNG” 2. Mục đích của đề tài: Nhằm giúp cho học sinh lớp 12 rèn kỹ năng tính tích phân, đặc biệt là tích phân có chứa dấu giá trị tuyệt đối, rèn kỹ năng đọc đồ thị của hàm số, và khắc phục những khó khăn , sai lầm khi gặp bài toán tính diện tích hình phẳng. Từ đó giúp học sinh phát huy tốt kiến thức về diện tích mà học sinh đã học ở lớp dưới, thấy được tính thực tế và sự liên hệ nội tại của vấn đề này trong chương trình toán , học sinh sẽ cảm thấy hứng thú, thiết thực và học tốt vấn đề ứng dụng của tích phân. Đây là một tài liệu tham khảo rất tốt cho học sinh để luyện thi THPT quốc gia 3. Đối tượng nghiên cứu: Kiến thức môn toán như đã trình bày đóng vai trò nền tảng. Vì vậy để giúp học sinh lớp 12 học tốt phần ứng dụng tích phân tính diện tích hình phẳng là vấn đề không chỉ của riêng một cá nhân giáo viên dạy toán nào. Tuy nhiên, để đạt hiệu quả rõ ràng trong việc nghiên cứu và thể nghiệm trong đề tài này tôi chủ yếu tập trung đi sâu vào các phương pháp dạy học toán như rèn kỹ phân tích, kỹ năng đọc đồ thị để xét dấu các biểu thức, kỹ năng “ chia nhỏ” hình phẳng để tính, kỹ năng cộng , trừ diện tích và phát huy tính linh hoạt sáng tạo cho học sinh lớp 12. Các bài toán được đề cập đến trong đề tài thuộc phạm vi sách giáo khoa, sách bài tập, sách tham khảo đảm bảo tính vừa sức đối với các em. 4. Phương pháp nghiên cứu: - Nghiên cứu về phương pháp dạy học sinh lớp 12 thi THPT quốc gia trong các năm giảng dạy . - Đề tài này được hoàn thành trên phương pháp thống kê, tổng hợp, trao đổi và tổng kết các năm học, quan sát, phân tích nguyên nhân và phương pháp thực nghiệm sư phạm. Kinh nghiệm của các đồng chí giáo viên và bản thân qua nhiều năm dạy học. PHẦN II NỘI DUNG SÁNG KIẾN KINH NGHIỆM 1. Cơ sở lí luận Xuất phát từ việc giải toán đi kèm với tư duy, tính toán. Mặt khác Toán học là một môn khoa học yêu cầu phải chính xác do đó học sinh dễ nhàm chán, cảm thấy khó khăn khi tiếp thu. Việc học tập môn Toán có tính kế thừa, các tiết sau vận dụng các tiết trước cũng như các kiến thức khác đã học qua ở trước đó do đó nếu học sinh lơ là không chú ý ở một tiết, một nội dung nào đó thì sẽ rất khó khăn khi học, tiếp thu kiến thức ở các tiết sau. 2. Thực trạng của vấn đề : Chủ đề ứng dụng của tích phân là một trong những kiến thức cơ bản ở chương trình toán giải tích lớp 12. Việc dạy và học vấn đề này học sinh giúp học sinh hiểu rõ ý nghĩa hình học của tích phân, đặc biệt là tính diện tích của hình phẳng giới hạn bởi các đồ thị hàm số. Đây cũng là một nội dung thường gặp trong các đề thi THPT quốc gia. Nhìn chung khi học vấn đề này, đại đa số học sinh thường gặp những khó khăn, sai lầm như : - Nếu không có hình vẽ thi học sinh thường không hình dung được hình phẳng. Do dó học sinh có cảm giác “xa lạ” hơn so với khi học về diện tích của hình phẳng đã học trước đây. Học sinh không tận dụng được kiểu “tư duy liên hệ cũ với mới” vốn có của mình khi nghiên cứu vấn đề này. -Học sinh chưa thực sự hứng thú và có cảm giác nhẹ nhàng khi học vấn đề này, trái lại học sinh có cảm giác nặng nề, khó hiểu. - Học sinh thường chỉ nhớ công thức tính diện tích hình phẳng một cách máy móc, khó phát huy tính linh hoạt sáng tạo, đặc biệt là kỹ năng đọc đồ thị để xét dấu các biểu thức, kỹ năng “ chia nhỏ” hình phẳng để tính; kỹ năng cộng, trừ diện tích. Đây là một khó khăn rất lớn mà học sinh thường gặp phải. Trước khi thực hiện sáng kiến của mình, kết quả khảo sát lực học của 102 học sinh khối 12 trong phần ứng dụng của tích phân tính diện tích hình phẳng như sau: Lớp Tổng số HS Nhận biết Thông hiểu Vận dụng Vận dụng cao SL Tỉ lệ% SL Tỉ lệ% SL Tỉ lệ% SL Tỉ lệ% 12 A1 52 25 48.1 17 32.7 10 19.2 0 0 12 A2 50 26 52 16 32 08 16 0 0 Tổng : 102 51 50 34 33.3 18 16.7 0 0 3. Diện tích hình phẳng. 3.1. Hình phẳng giới hạn bởi một đồ thị hàm số và trục hoành. a/ Công thức tính diện tích của hình phẳng giới hạn bởi đồ thị hàm số y = f(x) , trục hoành và hai đường thẳng x = a , x = b Chú ý : Giả sử hàm số y = f(x) liên tục trên đoạn . Khi đó hình thang cong giới hạn bởi đồ thị hàm số y = f(x) , trục hoành và hai đường thẳng x = a , x = b có diện tích là S và được tính theo công thức : (1) C Để tính diện tích S ta phải tính tích phân (1) , muốn vậy ta phải “phá” dấu giá trị tuyệt đối . Nếu thì Nếu thì < Muốn “phá” dấu giá trị tuyệt đối ta phải xét dấu của biểu thức f(x) . Thường có hai cách làm như sau : - Cách 1: Dùng định lí “dấu của nhị thức bật nhất” , định lí “dấu của tam thức bậc hai” để xét dấu các biểu thức f(x) ; đôi khi phải giải các bất phương trình f(x) ≥ 0 , f(x) ≤ 0 trên đoạn - Cách 2: Dựa vào đồ thị của hàm số y =f(x) trên đoạn để suy ra dấu của f(x) trên đoạn đó . Nếu trên đoạn [a ; b] đồ thị hàm số y = f(x) nằm phía “trên” trục hoành thì Nếu trên đoạn [a ; b] đồ thị hàm số y = f(x) nằm phía “dưới” trục hoành thì -Cách 3 Nếu f(x) không đổi dấu trên [a ; b] thì ta có : b/ Một vài ví dụ minh hoạ cách tính tích phân có chứa dấu giá trị tuyệt đối Ví dụ1 : Tính Giải: Xét dấu nhị thức bậc nhất f(x) = 2x + 4 x -∞ -2 +∞ f(x)=2x + 4 - 0 + Suy ra Do đó Ví dụ 2 : Giải: Xét dấu tam thức f(x) = - x2 + 2x – 2 , có , a = - 1 < 0 Suy ra f(x) < 0 Suy ra Ví dụ 3: Giải: Xét dấu tam thức f(x) = x2 – 3x + 2 , có a = 1 > 0 ; và x -∞ 0 1 2 +∞ f(x)= x2 - 3x + 2 + 2 + 0 - 0 + Suy ra và Do đó : =-=1 c/ Diện tích của hình phẳng giới hạn bởi một đồ thị hàm số với trục hoành. Bài toán 1: Tính diện tích của hình phẳng giới hạn bởi đồ thị hàm số y = 2x + 4 , trục hoành , các đường thẳng x = - 2 , x = 0 . Hình 1 Giải: Diện tích S của hình phẳng trên là Từ hình vẽ , suy ra Do đó (đvdt) Bài toán 2: Tính diện tích của hình phẳng (có tô màu ) sau đây . Hình 4 Hình phẳng trên được giới hạn bởi đồ thị hàm số y = x2 , trục hoành và hai đường thẳng x = 0 , x = 2. Giải: Diện tích S của hình phẳng trên là Vì (đvdt) Bài toán 3: Hình thang sau được giới hạn bởi các đường thẳng y = -x – 2 , y = 0 , x = 0 và x = 3. Hãy tính diện tích hình thang đó . Hình 6 Giải: Diện tích S của hình phẳng trên là Từ hình vẽ , suy ra (đvdt) Ghi nhớ : Nếu phương trình f(x) = 0 có k nghiệm phân biệt x1 , x2 , , xk thuộc (a ; b) thì trên mỗi khoảng (a ; x1 ) , (x1 ; x2) , , (xk ; b) biểu thức f(x) có dấu không đổi . Khi đó để tính tích phân ta có thể tính như sau : Bài toán 4: Cho hàm số y = x3 - 3x2 + 2 có đồ thị (C ) (Hình 12) . Hình 12 Tính diện tích của hình phẳng giới hạn bởi đồ thị (C ) , trục hoành , trục tung và đường thẳng x = 2 . Giải: Trục tung có phương trình x = 0.Diện tích S của hình phẳng giới hạn bởi đồ thị (C ) , trục hoành và hai đường thẳng x = 0 , x = 2 được tính bởi công thức : Cách tính 1: Dựa vào đồ thị , suy ra trên đoạn [ 0 ; 2 ] đồ thị (C ) cắt trục hoành tại một điểm có hoành độ x = 1 . Hơn nữa x3 -3x2 + 2 ≥ 0 " x Î [ 0 ; 1 ] và x3 -3x2 + 2 ≤ 0 "xÎ [ 1 ; 2 ] Do đó (đvdt) Cách tính 2: (đvdt) Bài toán 5: Cho hàm số y = x4 - 3x2 + 2 có đồ thị ( C ) . (Hình 13 ) Hình 13 Hãy tính diện tích của hình phẳng giới hạn bởi đồ thị ( C ) , trục hoành , và hai đường thẳng x = - 1 , x = 1. Giải: Diện tích S của hình phẳng giới hạn bởi đồ thị (C ) , trục hoành và hai đường thẳng x = -1 , x = 1 được tính bởi công thức : Dựa vào đồ thị , suy ra x4 -3x2 + 2 ≥ 0 " x Î [ -1 ; 1 ] Do đó (đvdt) Bài toán 6 : Tính diện tích của hình phẳng giới hạn bởi đồ thị hàm số y = xlnx , trục hoành , trục tung và đường thẳng x = e . (Hình 16) Hình 16 Giải Trục tung có phương trình x = 0 Diện tích S cần tìm là Đặt Do đó (đvdt) Bài toán 7: Tính diện tích của hình phẳng sau , biết rằng đồ thị (C ) là đồ thị của hàm số Hình 19 Giải: Hình phẳng trên được giới hạn bởi đồ thị hàm số , trục hoành , và hai đường thẳng x = 0 , x = 1 . Vì ≥ 0 với mọi . Đặt u = 5x + 4 => du = 5dx Khi x = 0 => u = 4 Khi x =1 => u = 9 Do đó (đvdt) Bài toán 8: Tính diện tích của hình phẳng giới hạn bởi đồ thị hàm số , trục hoành , trục tung và đường thẳng x = 3 Hình 21 Giải: Ta có Vì và (đvdt) Bài tập tương tự : 1/ Tính diện tích của hình phẳng giới hạn bởi các đường sau : y = x2 , trục hoành và hai đường thẳng x = -2 , x = 1 y = -x2 + 2 , y = 0 và hai đường thẳng x = - 1 ; x = 1 y = ex , y = 0 , và hai đường thẳng x = 0 , x = 2 y = x3 - 4x , y = 0 , x = -2 , x = 1 y = x4 – 5x2 + 4 , y = 0 , trục tung và đường thẳng x = 2 2/ Tính diện tích của hình phẳng giới hạn bởi các đường sau : a/ y = lnx , y = 0 , x = 1 , x = e b/ y = ln(2x + 1) , y = 0 , x = 0 , x = e c/ y =2x , y =1 d/ y = sinx , y = 0 , x = , 3.2.Hình phẳng được giới hạn bởi hai đồ thị hàm số. * Công thức tính diện tích của hình phẳng giới hạn bởi hai đồ thị hàm số : Cho hai đồ thị của hai hàm số y = f(x), y = g(x) và hai đường thẳng x = a, x =b (a<b) Hình phẳng giới hạn bởi bốn đường y = f(x), y = g(x) và hai đường thẳng x = a, x = b có diện tích S được tính theo công thức: . Bài toán 1: Tính diện tích của hình phẳng giới hạn bởi đồ thị hàm số y = xlnx , y = x và hai đường thẳng x = 1, x = e Giải : Phương trình hoành độ giao điểm của hai đồ thị đã cho là : Vì x > 0 nên Vậy hoành độ giao điểm của hai đồ thị đã cho là x = e. Trên đoạn phương trình xlnx – x = 0 chỉ có một nghiệm x = e Hình phẳng giới hạn bởi bốn đường y =xlnx , y = x và hai đường thẳng x = 1, x = e có diện tích S được tính theo công thức : Vì nên (đvdt) Bài toán 2 : Tính diện tích của hình phẳng giới hạn bởi đồ thị của hai hàm số , và hai đường thẳng x = 0,x = 2 Giải: Hoành độ giao điểm của hai đồ thị trên là nghiệm của phương trình : (đvdt) Bài toán 3. Tính diện tích của hình phẳng giới hạn đồ thị hàm số y = x2 -3x + 2 và đường thẳng y = x – 1 . Hình 26 Giải: Phương trình hoành độ giao điểm của đồ thị hàm số y = x2 -3x + 2 và đường thẳng y = x – 1 là : Suy ra diện tích của hình phẳng trên là : Cách 1 : Dựa vào đồ thị ta có x2 – 3x + 2 ≤ x – 1 " x Î [1 ; 3 ] . Do đó x2 – 4x + 3 ≤ 0 " x Î [1 ; 3] (đvdt) Cách 2 : Xét dấu tam thức x2 - 4x + 3 ta có : X -∞ 1 3 + ∞ x2 – 4x + 3 + 0 - 0 + Do đó x2 – 4x + 3 ≤ 0 " x Î [1 ; 3] Cách 3 : Bài toán 4. Cho hàm số y = x3 – 3x + 2 có đồ thị (C ) a/ Viết phương trình tiếp tuyến D của đồ thị (C ) tại điểm có hoành độ bằng 2 . b/ Tính diện tích của hình phẳng giới hạn bởi đồ thị (C ) , đường thẳng x = 1 và tiếp tuyến D . Hinh 28 Giải : a/ y = x3 – 3x + 2 Khi x = 2 ta có y(2) = 8 – 6 + 2 = 4 y’ = 3x2 - 3 y’(2) = 12 – 3 = 9 Phương trình tiếp tuyến của (C ) tại điểm (2 ; 4 ) là y = 9(x -2) + 4 hay y = 9x - 14 b/ Diện tích của hình phẳng cần tìm là : Bài toán 5: Hình phẳng sau được giới hạn bởi đồ thị (C ) : và đường thẳng y = x . Hãy tính diện tích của hình phẳng đó . Hình 29 Giải : Phương trình hoành độ giao điểm của hai đồ thị đã cho là : Diện tích của hình phẳng đã cho là : , Đặt u = 3x2 + 4 => du = 6xdx Khi x = 0 => u = 4 Khi x = -2 => u =16 Tương tự ta có (đvdt) Bài tập tương tự : Bài 1 .Hình phẳng sau được giới hạn bởi đồ thị hàm số y = , và các đường thẳng y = 2 , y = -2x – 4 (Hình 29).Tính diện tích của hình phẳng đó. Hình 31 Bài 2 .Tính diện tích của hình phẳng sau : (D) (d) Hình 32 Biết rằng (C ) là đồ thị của hàm số ; đường thẳng d đi qua hai điểm (4 ;0) và ( 0 ; - 4) ; đường thẳng D là tiếp tuyến của (C) tại điểm có hoành độ bằng 1 Bài 3. Cho hình phẳng (H) được giới hạn bởi hai đường parabol (P) và đường thẳng (d) như hình vẽ sau : Hình 35 Biết rằng parabol (P) đi qua gốc toạ độ O(0,0) và điểm A(2; -4); đường thẳng (d) đi qua hai điểm A(2 ; -4 ) và B(-2 ; 0). Tính diện tích của hình phẳng đã cho. Bài 4. Cho hình phẳng sau giới hạn bởi đồ thị hàm số y = f(x) = x(x +1)(x-2) và trục hoành. Hinh 37 a/ Tìm toạ độ giao điểm của đồ thị hàm số y =f(x) với trục hoành. b/ Tính diện tích của hình phẳng trên. Bài 5. Tính diện tích của hình phẳng giới parabol y = x2 - 2x + 2 , tiếp tuyến với parabol tại điểm M(3 ; 5) và trục tung. Bài 6.Tính diện tích của hình phẳng giới hạn bởi các đường y =x3 , y = 2 - x2 , x = 0 Bài 7.Cho hình phẳng (H) giới hạn bởi các đường y = 1 + sinx , y = 0, x = 0, x = Tính diện tích của hình phẳng trên. Bài 8. Tính diện tích của hình phẳng giới hạn bởi các đường y = 0; y = x3 - 3x2 + 3x - 1 và tiếp tuyến của đường cong đó tại điểm có hoành độ x = 3 . Bài 9. Cho hình phẳng giới hạn bởi các đường y = sinx , trục hoành , trục tung và đường thẳng Bài 10.Tính diện tích của hình phẳng giới hạn bởi các đường y =x3 , y = 2 - x2, x = 0 Bài 11.Cho hình phẳng (H) giới hạn bởi các đường y = 1 + sinx, y = 0, x =0, x = Tính diện tích của hình phẳng trên. Bài 12. Cho hình phẳng sau được giới hạn bởi các đường , y = 0 và đường thẳng (d) đi qua hai điểm (-2; 0) , ( 0; 2). Hình 39 a/ Tính diện tích của hình phẳng trên. Bài 13.Tính diện tích của hình phẳng sau : Hình 40 Bài 14. Cho hàm số a/ Khảo sát sự biến thiên và vẽ đồ thị (C ) của hàm số đã cho . b/ Viết phương trình tiếp tuyến (d) của đồ thị (C ) tại điểm uốn. c/ Tính diện tích của hình phẳng giới hạn bởi đồ thị (C ), trục tung và tiếp tuyến (d). Hình 41 2.4. Hiệu quả đạt được sau khi áp dụng sáng kiến kinh nghiệm: Trong năm học 2018 – 2019 bản thân tôi được giao nhiệm vụ giảng dạy môn Toán 12 cùng với những thuận lợi và những khó khăn gặp phải trong quá trình giảng dạy như tôi đã trình bầy, tôi đã trăn trở suy nghĩ tìm các biện pháp với mục đích không phải cái gì khác mà chỉ muốn làm cho chất lượng dạy học của môn mình được phân công được phát triển tốt, các em có ý thức học tập môn Toán và đạt kết quả tốt hơn. Sau khi thực hiện sáng kiến của mình, kết quả khảo sát lực học của 102 học sinh khối 12 trong phần ứng dụng của tích phân tính diện tích hình phẳng như sau: Lớp Tổng số HS Nhận biết Thông hiểu Vận dụng Vận dụng cao SL Tỉ lệ% SL Tỉ lệ% SL Tỉ lệ% SL Tỉ lệ% 12 A1 52 10 19.2 27 51.9 15 28.9 0 0 12 A2 50 12 24 25 50 13 26 0 0 Tổng : 102 51 50 34 33.3 18 16.7 0 0 PHẦN III: KẾT LUẬN- KIẾN NGHỊ 1. Kết luận: Qua quá trình giảng dạy trong thời gian vừa qua tôi nhận thấy rằng , tài liệu “Giúp học sinh 12 học tốt phần ứng dụng tích phân tính diện tích hình phẳng” đã giúp tôi thu được nhiều kết quả khả quan.Học sinh khắc phục được những “sai lầm” và khó khăn khi gặp bài toán tính diện tích của hình phẳng ở chương trình giải tích 12. Thuận lợi cho việc tăng cường tính trực quan ,cũng đẩy mạnh ứng dụng công nghệ thông tin và dạy học .Từ đó , các em học sinh rât thích thú và học tốt vấn đề này. 2.Kiến nghị đề xuất: - Để đề tài được thực hiện và đạt được hiệu quả như mong muốn tôi nghĩ không phải chỉ mỗi một mình giáo viên bộ môn là thực hiện tốt mà cần phải có sự vào cuộc của mọi lực lượng, sự hỗ trợ đóng góp ý kiến của giáo viên bộ môn khác, của Ban giám đốc, sự quan tâm giúp đỡ và tạo điều kiện để học sinh học tập của phụ huynh học sinh, của các ban ngành đoàn thể trong xã. 3.2.1. Với giáo viên: - Trong từng tiết dạy cần kế thừa và phát triển những phương pháp tích cực, nên áp dụng rộng rãi dạy học các phương pháp tìm tòi, đặt – giải quyết vấn đề, chú ý phương pháp tự học của học sinh. 3.2.2 Với ban giám đốc: - Là những người chịu trách nhiệm việc đổi mới phương pháp dạy học trong trung tâm, nên cần có những biện pháp tổ chức quản lí phù hợp để khuyến khích, tạo điệu kiện cho giáo viên áp dụng các phương pháp dạy học tích cực ngày càng rộng rãi, thường xuyên và có hiệu quả hơn. 3.2.3 Với lãnh đạo: - Chương trình SGK đổi mới đã mang lại sự chyển biến mạnh mẽ trong quá trình dạy và học, trong đó người học đóng vai trò chủ thể của nhận thức. Từ hiệu quả của đề tài trên tôi mạnh dạn đề xuất cần bổ sung thêm nhiều tại liệu thiết thực và hiệu quả vào thư viện nhà trường giúp học sinh tự tìm tòi nghiên cứu trong quá trình học tập. Trên đây là sáng kiến kinh nghiệm đã tôi áp dụng vào thực tế dạy học trong quá trình giảng dạy môn toán khối 12 và đã đạt được những kết quả nhất định, rất mong được sự đóng góp ý kiến của các bạn bè đồng nghiệp và của cấp trên để cho sáng kiến của tôi ngày một hoàn thiện hơn. Tôi xin chân thành cảm ơn! XÁC NHẬN CỦA THỦ TRƯỞNG ĐƠN VỊ Thanh Hóa, ngày 20 tháng 5 năm 2019 Tôi xin cam đoan đây là SKKN của mình viết, không sao chép nội dung của người khác. Mai Phương Thảo TÀI LIỆU THAM KHẢO 1. Sách giáo khoa toán 12 - Nhà xuất bản giáo dục 2. Sách bài tập toán 12 - Nhà xuất bản giáo dục 3. Bài giảng chuyên sâu Toán THPT – Giải Toán, Giải tích 12 – Lê Hồng Đức - Nhà xuất bản, Hà Nội. 4. Phân loại và phương pháp giải các dạng bài tập toán giải tích 12 – Lê Thị Hương ( Chủ Biên ) – Nhà xuất bản Đại học quốc gia Hà Nội. DANH MỤC CÁC ĐỀ TÀI SKKN ĐÃ ĐƯỢC HỘI ĐỒNG ĐÁNH GIÁ XẾP LOẠI CẤP SỞ GD & ĐT XẾP LOẠI TỪ C TRỞ LÊN Họ và tên: Mai Phương Thảo Chức vụ, đơn vị công tác: Giáo viên Trung tâm GDNN – GDTX Thọ Xuân TT Tên đề tài SKKN Cấp đánh giá xếp loại ( Ngành GD ) Kết quả đánh giá xếp loại ( A, B, C ) Năm học đánh giá xếp loại 1 Khai thác bài toán cực trị trong hình học không gian nâng cao hiệu quả giải bài tập hình học giải tích cho học sinh lớp 12 Trung tâm GDTX Tỉnh C 2016 - 2017
Tài liệu đính kèm:
- skkn_giup_hoc_sinh_lop_12_hoc_tot_phan_ung_dung_tich_phan_ti.doc