SKKN Một số giải pháp hướng dẫn học sinh giải phương trình vô tỉ

SKKN Một số giải pháp hướng dẫn học sinh giải phương trình vô tỉ

 Học sinh trung tâm giáo dục thường xuyên Thiệu Hoá đa phần là con em nông thôn, cha mẹ không có điều kiện chăm lo cho con cái học hành. Ngoài giờ đến lớp các em còn phải giúp đỡ bố mẹ các công việc gia đình và đồng áng, không có người kèm cặp và cũng không có nhiều thời gian để học, dẫn đến tình trạng kiến thức bị “hổng” nhiều và thiếu những kỹ năng cần thiết để làm toán nên hầu hết các em sợ học môn toán và học yếu môn toán.

 Là giáo viên dạy toán, đã có 14 năm gắn bó với nghề, tôi rất thông cảm với các em và trăn trở trước thực tế đó. Bởi vậy trong quá trình giảng dạy, tôi luôn suy nghĩ, tìm tòi, đúc rút kinh nghiệm và học hỏi đồng nghiệp để tìm ra những biện pháp thích hợp giúp các em học sinh nắm bắt kiến thức một cách dễ hiểu và dễ vận dụng nhất.

 Năm học 2016-2017, tôi được phân công trực tiếp giảng dạy ba lớp 10. Tôi nhận thấy đa số học sinh nhận thức còn chậm, kết quả học tập môn toán còn thấp nên giáo viên cần có phương pháp cụ thể cho từng dạng toán để học sinh nắm được bài tốt hơn.

 Đặc biệt phần giải phương trình vô tỉ là một nội dung tương đối khó, hơn nữa sách giáp khoa trình bày khá sơ sài và thời lượng trên lớp còn quá ít. Do đó học sinh đa phần còn khá mơ hồ và lúng túng trong việc giải phương trình vô tỉ, dễ bị nhầm lẫn và đưa ra lời giải không chính xác, dẫn đến kết quả làm bài chưa tốt. Với mong muốn góp phần nâng cao chất lượng dạy học môn Toán ở trường phổ thông trong khuôn khổ chương trình đại số 10 cơ bản, tôi chọn đề tài:

 “Một số giải pháp hướng dẫn học sinh giải phương trình vô tỉ’’.

 

doc 21 trang thuychi01 7875
Bạn đang xem 20 trang mẫu của tài liệu "SKKN Một số giải pháp hướng dẫn học sinh giải phương trình vô tỉ", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
SỞ GIÁO DỤC & ĐÀO TẠO THANH HÓA
TRUNG TÂM GDTX THIỆU HÓA
&
SÁNG KIẾN KINH NGHIỆM
Tên đề tài: 
 MỘT SỐ GIẢI PHÁP HƯỚNG DẪN HỌC SINH GIẢI PHƯƠNG TRÌNH VÔ TỈ.
 Người thực hiện: Lê Thị Hoa Sinh
 Chức vụ: Giáo viên
 SKKN thuộc môn: Toán
Thanh Hóa năm 2017
MỤC LỤC
PHẦN A
MỞ ĐẦU
Trang 2
PHẦN B
NỘI DUNG SKKN
Trang 3
Chương I
CƠ SỞ LÝ LUẬN 
Trang 3
Chương II
THỰC TRẠNG CỦA ĐỀ TÀI 
Trang 5
Chương III
GIẢI PHÁP THỰC HIỆN
Trang 8
Giải pháp 1
Trang 8
Giải pháp 2
Trang 11
Giải pháp 3
Trang 12
Chương IV
KIỂM NGHIỆM
Trang 18
PHẦN C
KẾT LUẬN VÀ KIẾN NGHỊ
 Trang 18
1
KẾT LUẬN
Trang 18
2
KIẾN NGHỊ
Trang 19
A. MỞ ĐẦU
 Học sinh trung tâm giáo dục thường xuyên Thiệu Hoá đa phần là con em nông thôn, cha mẹ không có điều kiện chăm lo cho con cái học hành. Ngoài giờ đến lớp các em còn phải giúp đỡ bố mẹ các công việc gia đình và đồng áng, không có người kèm cặp và cũng không có nhiều thời gian để học, dẫn đến tình trạng kiến thức bị “hổng” nhiều và thiếu những kỹ năng cần thiết để làm toán nên hầu hết các em sợ học môn toán và học yếu môn toán. 
 Là giáo viên dạy toán, đã có 14 năm gắn bó với nghề, tôi rất thông cảm với các em và trăn trở trước thực tế đó. Bởi vậy trong quá trình giảng dạy, tôi luôn suy nghĩ, tìm tòi, đúc rút kinh nghiệm và học hỏi đồng nghiệp để tìm ra những biện pháp thích hợp giúp các em học sinh nắm bắt kiến thức một cách dễ hiểu và dễ vận dụng nhất. 
 Năm học 2016-2017, tôi được phân công trực tiếp giảng dạy ba lớp 10. Tôi nhận thấy đa số học sinh nhận thức còn chậm, kết quả học tập môn toán còn thấp nên giáo viên cần có phương pháp cụ thể cho từng dạng toán để học sinh nắm được bài tốt hơn.
 Đặc biệt phần giải phương trình vô tỉ là một nội dung tương đối khó, hơn nữa sách giáp khoa trình bày khá sơ sài và thời lượng trên lớp còn quá ít. Do đó học sinh đa phần còn khá mơ hồ và lúng túng trong việc giải phương trình vô tỉ, dễ bị nhầm lẫn và đưa ra lời giải không chính xác, dẫn đến kết quả làm bài chưa tốt. Với mong muốn góp phần nâng cao chất lượng dạy học môn Toán ở trường phổ thông trong khuôn khổ chương trình đại số 10 cơ bản, tôi chọn đề tài:
 “Một số giải pháp hướng dẫn học sinh giải phương trình vô tỉ’’.
B. NỘI DUNG SÁNG KIẾN KINH NGHIỆM.
I. CỞ SỞ LÝ LUẬN
 - Nhiệm vụ trung tâm trong trường học là hoạt động dạy của thầy và hoạt động học của trò, xuất phát từ mục tiêu đào tạo “Nâng cao dân trí, đào tạo nhân lực, bồi dưỡng nhân tài”. Giúp học sinh củng cố những kiến thức phổ thông đặc biệt là bộ môn toán học rất cần thiết không thể thiếu trong đời sống của con người. Môn Toán là một môn học tự nhiên quan trọng và khó với kiến thức rộng, đa phần các em ngại học môn này. 
 - Muốn học tốt môn toán các em phải nắm vững những tri thức khoa học ở môn toán một cách có hệ thống, biết vận dụng lý thuyết linh hoạt vào từng dạng bài tập. Điều đó thể hiện ở việc học đi đôi với hành, đòi hỏi học sinh phải có tư duy logic và cách biến đổi. Giáo viên cần định hướng cho học sinh học và nghiên cứu môn toán học một cách có hệ thống trong chương trình học phổ thông, vận dụng lý thuyết vào làm bài tập, phân dạng các bài tập rồi tổng hợp các cách giải.
 	- Trong chương trình toán THPT, mà cụ thể là phân môn Đại số 10, các em học sinh đã được tiếp cận với phương trình chứa ẩn dưới dấu căn và được tiếp cận với một vài cách giải thông thường đối với những bài toán cơ bản, đơn giản. Tuy nhiên trong thực tế các bài toán giải phương trình chứa ẩn dưới dấu căn rất phong phú và đa dạng và đặc biệt là trong các đề thi Đại học - Cao đẳng -THCN, các em sẽ gặp một lớp các bài toán về phương trình vô tỷ mà chỉ có số ít các em biết phương pháp giải nhưng trình bày còn lủng củng chưa được gọn gàng, sáng sủa thậm chí còn mắc một số sai lầm không đáng có trong khi trình bày. Tại sao lại như vậy?
 - Lý do chính ở đây là: Trong chương trình SGK Đại số lớp 10 hiện hành được trình bày ở phần đầu chương III (Giữa học kỳ I) rất là ít và hạn hẹp chỉ có một tiết lý thuyết sách giáo khoa, giới thiệu sơ lược 1 ví dụ và đưa ra cách giải khá rườm rà khó hiểu và dễ mắc sai lầm, phần bài tập đưa ra sau bài học cũng rất hạn chế. Mặt khác do số tiết phân phối chương trình cho phần này quá ít nên trong quá trình giảng dạy, các giáo viên không thể đưa ra đưa ra được nhiều bài tập cho nhiều dạng để hình thành kỹ năng giải cho học sinh. Nhưng trong thực tế, để biến đổi và giải chính xác phương trình chứa ẩn dưới dấu căn đòi hỏi học sinh phải nắm vững nhiều kiến thức, phải có tư duy ở mức độ cao và phải có năng lực biến đổi toán học nhanh nhẹn, thuần thục.
- Do vậy, tôi mạnh dạn đưa ra sáng kiến kinh nghiệm này với mục đích giúp cho học sinh vận dụng và tìm ra phương pháp giải khi gặp các bài toán giải phương trình chứa ẩn dưới dấu căn.
II. THỰC TRẠNG CỦA VẤN ĐỀ:
 Học sinh khối 10 trung tâm GDTX Thiệu Hóa đa số nhận thức còn chậm, chưa hệ thống được kiến thức. Khi gặp các bài toán về phương trình vô tỉ chưa phân loại và định hình được cách giải, lúng túng khi đặt điều kiện và biến đổi,trong khi đó phương trình loại này có rất nhiều dạng. Nhưng bên cạnh đó chương trình đại số 10 không nêu cách giải tổng quát cho từng dạng, thời lượng dành cho phần này là rất ít.
 Qua việc khảo sát kiểm tra định kỳ và việc học tập, làm bài tập hàng ngày nhận thấy học sinh thường bỏ qua hoặc không giải được hoặc trình bày cách giải đặt điều kiện và lấy nghiệm sai ở phần này.
Khi giảng dạy cho học sinh tôi nhận thấy: 
 1. Khi gặp bài toán: 
 Giải phương trình = x - 2 (1) 
 Sách giáo khoa đại số 10 đã giải như sau
điều kiện pt(1) là x (*)
 (1) 2x - 3 = x2 - 4x + 4 
 x2 - 6x + 7 = 0
 Phương trình cuối có nghiệm là x = 3 + và x = 3 - .
 Cả hai nghiệm đều thoả mãn điều kiện (*) của phương trình (1) nhưng khi thay các giá trị của các nghiệm tìm được vào phương trình (1) thì giá trị x = 3 - bị loại .
 Vậy nghiệm phương trình (1) là x = 3 + .
 Mặt khác, một số học sinh còn có ý kiến sau khi giải được nghiệm ở phương trình cuối chỉ cần so sánh với điều kiện x (*) để lấy nghiệm và nghiệm phương trình là x = 3 + và x = 3 - .
 Theo tôi cách giải vừa nêu trên rất phức tạp ở việc thay giá trị của nghiệm vào phương trình ban đầu để thử sau đó loại bỏ nghiệm ngoại lai và dễ dẫn đến sai lầm của một số học sinh khi lấy nghiệm cuối cùng vì nhầm tưởng điều kiện x là điều kiện cần và đủ.
 2. Khi gặp bài toán: 
 Giải phương trình = 
 Học sinh thường đặt điều kiện sau đó bình phương hai vế để giải phương trình
 Điều chú ý ở đây là học sinh cứ tìm cách để biểu thị hệ điều kiện của phương trình mà không biết rằng chỉ cần điều kiện x + 3 0 là điều kiện cần và đủ mà không cần đặt đồng thời cả hai điều kiện .
 3. Khi gặp bài toán: 
 Giải phương trình (x + 4) = 0 
 Một số HS đã có lời giải sai như sau: 
 Ta có: (x + 4) = 0 ó 
 Nhận xét: Đây là một bài toán hết sức đơn giản nhưng nếu giải như vậy thì đã mắc một sai lầm mà không đáng có. Rõ ràng x = - 4 không phải là nghiệm của phương trình trên.
 Chú ý rằng: 
ở đây đã bị bỏ qua mất điều kiện là: B ≥ 0 (x ≥ 2).
 4. Khi gặp bài toán: 
 Giải phương trình 5 = 4x2 - 12x + 15
 Một số học sinh thường đặt điều kiện rồi bình phương hai vế đi đến một phương trình bậc bốn và rất khó để giải được kết quả cuối cùng vì phương trình bậc bốn chưa có cách giải cụ thể đối với học sinh bậc phổ thông .
 5. Khi gặp bài toán: Giải phương trình
 Một số HS đã có lời giải sai như sau: 
Ta có: 
 Vậy phương trình đã cho vô nghiệm.
Nhận xét: Rõ ràng x = 14 là nghiệm của phương trình. Lời giải trên đã làm cho bài toán có nghiệm trở thành vô nghiệm.
 Cần chú ý rằng: 	
Lời giải trên đã xét thiếu trường hợp A < 0; B < 0
 Lúc này vai trò của người giáo viên là rất quan trọng, phải hướng dẫn chỉ rõ cho học sinh phương pháp giải từng dạng toán, nên giải như thế nào cho hợp lý đối với từng loại toán để được một bài toán đúng, biến đổi đúng và suy luận có logic, tránh được các tình huống rườm rà phức tạp dễ mắc sai lầm. Trên cơ sở đó hình thành cho học sinh kỹ năng tốt khi giải quyết các bài toán về phương trình vô tỉ.
III.GIẢI PHÁP VÀ TỔ CHỨC THỰC HIỆN
 - Từ lý do chọn đề tài, từ cơ sở thực tiễn giảng dạy khối lớp 10 ở trung tâm , cùng với kinh nghiệm của bản thân trong thời gian giảng dạy, tôi đã tổng hợp , khai thác và hệ thống hoá lại các kiến thức thành một chuyên đề: “Một số giải pháp hướng dẫn học sinh giải phương trình vô tỉ’’.
 - Qua nội dung của đề tài này tôi mong muốn sẽ cung cấp cho học sinh một số phương pháp tổng quát và một số kỹ năng cơ bản và phát hiện được đâu là điều kiện cần và đủ. Học sinh thông hiểu và trình bày bài toán đúng trình tự, đúng logic, không mắc sai lầm khi biến đổi. Hy vọng đề tài nhỏ này ra đời sẽ giúp các bạn đồng nghiệp cùng các em học sinh có một cái nhìn toàn diện cũng như phương pháp giải một lớp các bài toán về giải phương trình vô tỷ.
 Qua nghiên cứu trao đổi và đúc rút kinh nghiệm từ thực tế và ý kiến của đồng nghiệp tôi mạnh dạn đưa ra hướng gải quyết các vấn đề trên của học sinh với những giải pháp: Đưa ra một số giải pháp giúp học sinh hình thành kĩ năng khi biến đổi và giải phương trình chứa ẩn dưới dấu căn.
1/ Giải pháp 1: 
 * Hướng dẫn học sinh giải phương trình dạng 1 : = g(x) (1)
a, Phương pháp:
 Giáo viên: chỉ cho học sinh thấy được rằng nếu khi bình phương hai vế để đi đến phương trình tương đương thì hai vế đó phải không âm:
 pt = g(x) 
 Điều kiện gx) 0 là điều kiện cần và đủ vì f(x) = g2(x) 0 . Không cần đặt thêm điều kiện fx) 0 . 
b, Các ví dụ:
+ Ví dụ 1: Giải phương trình 
 = x - 3 . (1) [1]
 Điều kiện x 3 (*)
 (Chú ý: không cần đặt thêm điều kiện 3x - 4 0)
 Khi đó pt(1) 3x - 4 = (x - 3)2
 x2 - 6x + 9 = 3x - 4 
 x2 - 9x + 13 = 0 
 đối chiếu với điều kiện (*) ta thu được nghiệm của phương trình (1) là 
x = 
 ! Lưu ý: không cần phải thay giá trị của các nghiệm vào phương trình ban đầu để thử mà chỉ cần so sánh với điều kiện x 3 (*) để lấy nghiệm.
+ Ví dụ 2: Giải phương trình
 = 3x + 1 . (2) [2]
 .Nhận xét : 
 Biểu thức dưới dấu căn là biểu thức bậc hai, nên nếu sử dụng phương pháp biến đổi hệ quả sẽ gặp khó khăn khi biểu thị điều kiện để 3x2 - 2x -1 0 và thay giá trị của các nghiệm vào phương trình ban đầu để lấy nghiệm.A
 Ta có thể giải như sau: 
 . Điều kiện: x - (**)
 Khi đó pt(2) 3x2 - 2x - 1 = (3x + 1)2 
 3x2 - 2x - 1 = 9x2 + 6x + 1 
 3x2 + 4x + 1 = 0 
 đối chiếu với điều kiện (**) ta thu được nghiệm pt(2) là x = -
 + Ví dụ 3: Giải phương trình
 5 = 4x2 - 12x + 15 . (3) [4]
. Nhận xét: Biểu thức ngoài dấu căn là biểu thức bậc hai, nếu ta bình phương hai vế thì sẽ đi đến một phương trình bậc bốn rất khó giải.
 Ta có thể giải bài toán như sau:
 Chưa vội đặt điều kiện ở bước giả này.ta biến đổi
 pt(3) 4x2 - 12x + 11 - 5 + 4 = 0
Đặt = t ; đk t 0 , (***) .
Phương trình trở thành: t2 - 5t + 4 = 0 
 (thoả mãn điều kiện (***) )
 . Với t = 1 = 1
 4x2 - 12x + 10 = 0 phương trình này vô nghiệm.
 . Với t = 4 = 4
 4x2 - 12x - 5 = 0
Vậy nghiệm của phương trình là: x = V x = 
 *Như vậy khi gặp các bài toán thuộc các dạng nêu trên học sinh chủ động hơn trong cách đặt vấn đề bài giải : điều kiện phương trình là gì? đặt cái gì ? biến đổi như thế nào là biến đổi tương đương ? biến đổi như thế nào là biến đổi hệ quả? kết luận nghiệm cuối cùng dựa vào điều kiện nào?
2/ Giải pháp 2
 * Hướng dẫn học sinh giải phương trình dạng 2: . (2) 
 a. Phương pháp:
 Giáo viên hướng dẫn học sinh đặt điều kiện và biến đổi
 pt(2) 
 Chú ý: Không cần đặt đồng thời cả g(x) và f(x) vì f(x) = g(x) .
 b. Các ví dụ:
 + Ví dụ 1: Giải phương trình
 = , (1)
 .Điều kiện x , (*)
 pt(1) -3x + 2 = 2x + 1
 5x = 1 x = (thoả mãn với điều kiện (*) )
 Vậy nghiệm của phương trình là x = .
 ! Lưu ý: Điều kiện x , (*) là điều kiện cần và đủ của phương trình (1) nên ta chỉ cần đối chiếu với điều kiện (*) để lấy nghiệm cuối cùng của phương trình.
 + Ví dụ 2: Giải phương trình
 = , (2) [2]
 . Nhận xét: Biểu thức dưới dấu căn ở vế trái là biểu thức bậc hai nên ta đặt điều kiện cho vế phải không âm. 
 . ĐK: x - , (*).
 pt(2) 2x2 + 3x - 4 = 7x +2
 2x2 - 4x - 6 = 0 
 Đối chiếu với điều kiện (*), nghiệm của phương trình là x = 3 . 
 + Ví dụ 3: Giải phương trình (*)
Tóm tắt bài giải
 (*) 
 Vậy phương trình đã cho vô nghiệm.
3/ Giải pháp 3 :
*Hướng dẫn học sinh giải một số phương trình không mẫu mực 
 (Phương trình không tường minh).
 + Ví dụ 1: Giải phương trình
 2 - = 4 (1) [7]
 Điều kiện của phương trình là x -1 , (*)
 .Nhận xét: Biểu thức dưới dấu căn có dạng hằng đẳng thức 
 (a + b)2 = a2 +2ab + b2 nên ta biến đổi như sau.
 pt(1) 2 - = 4
 2 +2 - = 4
 = 2 x + 1 = 4 x = 3 (thoả mãn điều kiện (*) ) 
Vậy, nghiệm của phương trình là x = 3.
 + Ví dụ2: Giải phương trình
 - = 2 (2)
Điều kiện x (**)
 Chuyển vế và bình phương hai vế ta được
 pt(2) = 2 + 
 với điều kiện (**) nên hai vế luôn không âm , bình phương hai vế ta được.
 3x + 7 = x + 5 + 4
 2 = x + 1 tiếp tục bình phương hai vế 
 4x + 4 = x2 + 2x + 1
 x2 -2x - 3 = 0
 (thoả mãn điều kiện (**))
 Vậy nghiệm của phương trình là x = -1 V x = 3 .
 + Ví dụ 3: 
 Giải phương trình . [8]
 Lời giải : Ta có 
 Pt 
 Vậy phương trình đã cho vô nghiệm.
 Lưu ý: Học sinh có thể đưa ra lời giải sai như sau
 Ta có : 
 Vậy phương trình đã cho có nghiệm x = 2.
 Nhận xét: Ta nhận ra ngay x = 2 không phải là nghiệm đúng của phương trình đã cho.
 Chú ý rằng: 
 + Ví dụ 4: Giải phương trình
 = (3) [5]
 Hướng dẫn : Đk (***)
 ! Lưu ý: Hệ điều kiện (***) rất phức tạp nên ta không cần giải ra cụ thể.
 Từ ĐK (***) nên hai vế không âm ,bình phương hai vế ta được
 pt(3) 7 - x2 + x = 3 - 2x - x2 
 x = - 2x - 4 
 x = -1
Thay giá trị của x = -1 vào hệ ĐK (***) , thoả mãn
Vậy nghiệm của phương trình là x = -1
 + Ví dụ 5: Giải phương trình
 + = 3x + 2 - 16 , (4) [8]
HD: Điều kiện x -1 (****)
 NX: Đây là phương trình khá phức tạp nếu bình phương hai vế của phương trình ta cũng không thu được kết thuận lợi khi giải nên ta cớ thể giải như sau.
 Đặt + = t , (ĐK: t 0)
 3x + 2 = t2 - 4
 pt(4) t2 - t - 20 = 0 t = 5 (nhận) V t = - 4 (loại)
 . Với t = 5 2 =21 - 3x ( là phương trình thuộc dạng 1)
 x = 118 - (thoả mãn ĐK)
 Vậy nghiệm phương trình là x = 118 - 
 + Ví dụ 6: Giải phương trình
 x2 – 7x + 12 = [6]
Lời giải : Ta có
 x2 – 7x + 12 = 
 (x-3)(x-4) = (x-3)(x-4) = 
 Giải (1) = (x-3)(x-4) 
 Giải (2) = (x-3)(x-4) 
 Vậy phương trình đã cho có nghiệm là : x = 2 v x = 3 v x = 7.
 	 Nhân xét: Bài toán này HS có thể giải mắc sai lầm như sau:
 Lời giải sai: 
 Ta có: x2 – 7x + 12 = 
 (x-3)(x-4) = (x-3)(x-4) = 
 = (x-3)(x-4) 
 Giải ta có 
 Vậy phương trình đã cho có nghiệm x = 3 và x = 7.
 HS có thể kết luận với x =3 và x = 7 là hai nghiệm thoả mãn của phương trình. Mà không ngờ rằng phương trình đã cho còn có một nghiệm nữa là x = 2 cũng thoả mãn.
 Chú ý rằng: 
 Lời giải trên đã bỏ sót mất trường hợp A ≤ 0
 * Sau khi ra bài tập giải phương trình vô tỉ và hướng dẫn học sinh giải. Giáo viên ra dạng bài tập tương tự để học sinh giải. Qua đó học sinh rèn luyện phương pháp và hình thành kỹ năng giải phương trình vô tỉ.
 Bài tập 
Giải phương trình
 a. = 1 - 2x
 b. = 
 c. + x - 2 = 0
 HD: Biến đổi theo dạng 1 và dạng 2
 2. Giải phương trình: x2 - 3x + = 7 
 HD: Đặt t = (t)
 ĐS: x = -1 v x = 4
 3. Giải phương trình: + = 
 HD: Đặt đk sau đó bình phương hai vế
 ĐS: x = 2
 4. Giải phương trình:
 HD : 
 ĐS : Nghiệm phương trình là : x = -3.
 5. Giải phương trình: 
 HD: 
 ĐS: Nghiệm của phương trình là: x = 14 
 6. Giải phương trình: + = + 
 7. Giải phương trình: + = 4 
 8. Giải phương trình: x + = 2
 9. Giải phương trình: x2 + 3x + 1 = (x + 3)
 10. Giải phương trình: (4x - 1) = 2x3 + 2x +1
 11. Giải phương trình: x2 - 1 = 2x
 12. Giải phương trình: x2 + 4x = (x + 2)
IV. KIỂM NGHIỆM
- Kết quả bài kiểm tra trước khi áp dụng sáng kiến :
Lớp
Tổng số
Điểm 8 trở lên
Điểm từ 5 đến 8
Điểm dưới 5
Số lượng
Tỉ lệ
Số lượng
Tỉ lệ
Số lượng
Tỉ lệ
10C1
27
0
0%
12
44 %
15
56%
10C2
27
0
0 %
10
38 %
17
62 %
10C3
28
0
0 %
13
46%
15
54%
- Kết quả bài kiểm tra sau khi áp dụng sáng kiến :
Lớp
Tổng số
Điểm 8 trở lên
Điểm từ 5 đến 8
Điểm dưới 5
Số lượng
Tỉ lệ
Số lượng
Tỉ lệ
Số lượng
Tỉ lệ
10C1
27
2
7 %
21
78%
 4
15 %
10C2
27
2
7 %
20
74 %
5
19 %
10C3
28
4
14%
20
72%
4
14%
C.KẾT LUẬN VÀ KIẾN NGHỊ .
 1.Kết luận:
Trên đây là những giải pháp mà tôi đúc rút được trong suốt quá trình giảng dạy tại trung tâm GDTX Thiệu Hóa.
Phương trình vô tỉ là một nội dung quan trọng trong chương trình môn toán lớp 10 nói riêng và bậc THPT nói chung. Nhưng đối với học sinh lại là một mảng tương đối khó, đây cũng là phần nhiều thầy cô giáo quan tâm.
Đề tài của tôi đã được kiểm nghiệm trong các năm học giảng dạy lớp 10, được học sinh đồng tình và đạt được kết quả, nâng cao khả năng giải phương trình vô tỉ. Các em hứng thú học tập hơn, ở những lớp có hướng dẫn kỹ các em học sinh với mức học trung bình cứng trở lên đã có kỹ năng giải các bài tập. Học sinh biết áp dụng tăng rõ rệt. Cụ thể ở các lớp khối 10 sau khi áp dụng sáng kiến này vào giảng dạy thì số học sinh hiểu và có kỹ năng giải được cơ bản các dạng toán nói trên , kết quả được thể hiện qua các bài kiểm tra thử như đã nêu ở phần kiểm nghiệm.
 Như vậy tôi thấy các phương pháp có hiệu quả tương đối. Theo tôi khi dạy phần toán giải phương trình vô tỉ giáo viên cần chỉ rõ các dạng toán và cách giải tương ứng để học sinh nắm được bài tốt hơn.
 Mặc dù cố gắng tìm tòi, nghiên cứu song chắc chắn còn có nhiều thiếu sót và hạn chế. Tôi rất mong được sự quan tâm của tất cả các đồng nghiệp bổ sung và góp ý cho tôi. Tôi xin chân thành cảm ơn.
 2. Kiến nghị và đề xuất: 
 - Đề nghị các cấp lãnh đạo cần quan tâm hơn nữa hoạt đông học tập và cần có một kế hoạch lâu dài để nâng cao chất lương giáo dục, cũng như đáp ứng tốt những yêu cầu thiết thực của các tổ chuyên môn về mua sắm đồ dùng, thiết bị dạy học để phục vụ cho việc tăng cường đổi mới phương pháp dạy học.
 - Nhà trường cần tổ chức các buổi trao đổi phương pháp giảng dạy. Có tủ sách lưu lại các tài liệu chuyên đề bồi dưỡng ôn tập của giáo viên hàng năm để làm cở sở nghiên cứu phát triển chuyên đề.
 - Khuyến khích học sinh tăng cường học tập trao đổi, học nhóm nâng cao chất lượng học tập.
 Thiệu Hóa ngày 5/4/2017.
 Tôi xin cam đoan đây là đề tài kinh nghiệm do tôi học hỏi, tham khảo và đúc rút trong quá trình giảng dạy và không sao chép hoàn toàn từ một đề tài khác.
 Xác nhận của thủ trưởng đơn vị : Người viết sáng kiến :
 Lê Thị Hoa Sinh
* ĐÁNH GIÁ, XẾP LOẠI CỦA TỔ CHUYÊN MÔN:
............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
Xếp loại: ........................................
 * ĐÁNH GIÁ, XẾP LOẠI CỦA HỘI ĐỒNG KHOA HỌC- GIÁO DỤC NHÀ TRƯỜNG:
.......................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

Tài liệu đính kèm:

  • docskkn_mot_so_giai_phap_huong_dan_hoc_sinh_giai_phuong_trinh_v.doc