SKKN Khắc phục khó khăn và sai lầm thường gặp trong giải toán Tổ hợp – Xác suất cho học sinh Trung học phổ thông
Trong chương trình Toán ở THPT, chủ đề Tổ hợp – xác suất là một chủ đề mới được đưa vào trong những năm gần đây, trong đó xuất hiện nhiều thuật ngữ, ký hiệu, khái niệm mới. Vì thế đa số GV chưa có nhiều kinh nghiệm giảng dạy nội dung này. Đồng thời chưa có nhiều công trình nghiên cứu về những khó khăn và sai lầm mà học sinh THPT thường gặp. Thực tế cho thấy, đây là một chủ đề khó đối với HS và những bài toán thuộc chủ đề này cũng là những bài toán khó. Ngoài ra, GV chưa chú ý một cách đúng mức đến việc phát hiện, uốn nắn và sửa chữa sai lầm cho HS ngay trong giờ học Toán. Từ những lý do trên, tôi chọn nghiên cứu đề tài “Khắc phục khó khăn và sai lầm thường gặp trong giải toán Tổ hợp – Xác suất cho học sinh Trung học phổ thông" đã được vận dụng trong thực tế giảng dạy những năm qua và đem lại niềm yêu thích học tập bộ môn Toán cho học sinh.
1. MỞ ĐẦU 1.1. Lí do chọn đề tài: Trong chương trình Toán ở THPT, chủ đề Tổ hợp – xác suất là một chủ đề mới được đưa vào trong những năm gần đây, trong đó xuất hiện nhiều thuật ngữ, ký hiệu, khái niệm mới. Vì thế đa số GV chưa có nhiều kinh nghiệm giảng dạy nội dung này. Đồng thời chưa có nhiều công trình nghiên cứu về những khó khăn và sai lầm mà học sinh THPT thường gặp. Thực tế cho thấy, đây là một chủ đề khó đối với HS và những bài toán thuộc chủ đề này cũng là những bài toán khó. Ngoài ra, GV chưa chú ý một cách đúng mức đến việc phát hiện, uốn nắn và sửa chữa sai lầm cho HS ngay trong giờ học Toán. Từ những lý do trên, tôi chọn nghiên cứu đề tài “Khắc phục khó khăn và sai lầm thường gặp trong giải toán Tổ hợp – Xác suất cho học sinh Trung học phổ thông" đã được vận dụng trong thực tế giảng dạy những năm qua và đem lại niềm yêu thích học tập bộ môn Toán cho học sinh. 1.2. Mục đích nghiên cứu: Nghiên cứu một số khó khăn, sai lầm thường gặp ở học sinh THPT trong giải toán chủ đề Tổ hợp – Xác suất và đề xuất một số biện pháp khắc phục góp phần nâng cao chất lượng, hiệu quả dạy học chủ đề Tổ hợp – Xác suất, đặc biệt đối với những học sinh yếu kém. 1.3. Đối tượng nghiên cứu Trong khuôn khổ đề tài này tôi chỉ chọn nghiên cứu những khó khăn, sai lầm thường gặp ở học sinh THPT trong giải toán chủ đề Tổ hợp – Xác suất và biện pháp khắc phục. 1.4. Phương pháp nghiên cứu 1.4.1 Phương pháp nghiên cứu lý luận: Tìm hiểu, nghiên cứu tài liệu về các vấn đề liên quan đến đề tài. 1.4.2 Phương pháp điều tra – quan sát: Quan sát, thăm dò thực trạng và điều tra theo các hình thức: Trực tiếp giảng dạy, dự giờ, phỏng vấn và các biện pháp khác. 1.4.3 Phương pháp thống kê toán học: Xử lí số liệu thu được sau quá trình giảng dạy. - Làm sáng tỏ một số khó khăn và sai lầm thường gặp ở HS trong giải toán Tổ hợp – Xác suất. Đồng thời phân tích được những nguyên nhân dẫn đến những sai lầm đó và đề ra biện pháp khắc phục. 1.4.4. Những đóng góp về mặt thực tiễn: - Kết quả Sáng kiến kinh nghiệm có thể sử dụng làm tài liệu tham khảo cho GV và HS trong quá trình giảng dạy và học tập chủ đề Tổ hợp – Xác suất ở trường THPT. Và làm cơ sở để phát triển những nghiên cứu sâu, rộng hơn về những vấn đề có liên quan đến SKKN. 2. NỘI DUNG 2.1. Cơ sở lý luận Gần đây, vấn đề đổi mới phương pháp dạy học nói chung đang được bàn đến trên nhiều diễn đàn khác nhau. Người ta đã đề xuất, thử nghiệm nhiều phương pháp dạy học để nâng cao hiệu quả giờ dạy Toán. Nhìn chung, mối quan tâm của các nhà giáo dục đồng thời cũng là mối quan tâm của người thầy dạy Toán là làm thế nào để phát huy được tính chủ động sáng tạo của học sinh, gợi được niềm say mê học Toán của các em học sinh trong nhà trường hiện nay?! Đối tượng học sinh Trung học phổ thông của chúng ta có đặc điểm tâm sinh lý lứa tuổi là thích tìm hiểu, sáng tạo. Do đó, người thầy phải đóng vai trò là người dẫn đường tài ba để các em khám phá, sáng tạo. Bên cạnh đó, một trong những mục đích lớn nhất của giờ dạy và học Toán là làm sao tạo được sự hứng thú cho học sinh để giờ học Toán được nhẹ nhàng, thoải mái, sinh động chứ không cứng nhắc, không gượng ép đối với học sinh. Làm được những điều đó là người thầy đã đi đúng định hướng mà điều 24 Luật giáo dục do Quốc hội khóa X thông qua đã chỉ rõ: “phương pháp giáo dục phổ thông phải phát huy tính tích cực, tự giác, chủ động sáng tạo của học sinh; phù hợp với đặc điểm từng lớp học, môn học, bồi dưỡng phương pháp tự học, rèn luyện kĩ năng vận dụng kiến thức vào thực tiễn, tác động đến tình cảm,đem lại niềm vui, hứng thú học tập cho học sinh". "Thống kê toán và Lý thuyết xác suất, chúng xâm nhập vào hầu hêt các ngành khoa học tự nhiên và xã hội, các ngành kỳ thuật, vào quản lí kinh tế và tổ chức nền sản xuất, chúng có mặt trong công việc của mọi lớp người lao động : kĩ sư, bác sĩ, GV, công nhân, nông dân," [8]. V.I. Lenin đã đánh giá cao giá trị của thống kê: "Thống kê kinh tế - xã hội là một trong những vũ khí hùng mạnh nhất để nhận thức xã hội". Theo Nguyễn Bá Kim [11] thì "Thống kê Toán và Lí thuyết xác suất lại có nhiều khả năng trong việc góp phần giáo dục thế giới quan khoa học cho học sinh” và “.một số tri thức cơ bản của Thống kê toán và Lí thuyết xác suất phải thuộc vào học vấn phổ thông..." 2.2. Thực trạng của vấn đề 2.2.1 Thuận lợi, khó khăn 2.2.1.1 Thuận lợi - Đối với GV : Có nhận thức đúng đắn về tầm quan trọng của nội dung Tổ hợp - Xác suất trong chương trình Toán THPT. Kiến thức của nội dung này được trình bày trong SGK đảm bảo tính logic,... - Đối với HS: Nội dung Tổ hợp - Xác suất thường gắn liền với thực tiễn và thiết thực với cuộc sống nên thu hút được sự chú ý của HS. 2.2.1.2 Khó khăn - Đối với GV: GV chưa có nhiều kinh nghiệm; Các bài tập trong nội dung này thường không có thuật giải chung cho từng dạng bài. Nội dung kiến thức còn tương đối nhiều trong một tiết dạy,... - Đối với HS: HS chưa thật sự hiểu rõ bản chất các khái niệm, quy tắc, công thức, gặp khó khăn trong việc tìm ra phương pháp giải bài tập. Hệ thống bài tập SGK chưa thật sự phù hợp để giúp cho HS trong quá trình tự học của HS... Vậy vấn đề là làm thế nào để gợi được hứng thú cho học sinh học tập môn Toán nói chung và giờ học về chủ đề “Tổ hợp- Xác suất” nói riêng, có thể mỗi giáo viên có những biện pháp và phương pháp khác nhau. Riêng tôi chỉ xin được trình bày một số những khó khăn, sai lầm thường gặp và biện pháp khắc phục mà theo tôi là cơ bản có tác động tích cực đến việc khơi dậy niềm say mê học tập của học sinh. 2.3. Những khó khăn và sai lầm thường gặp của học sinh THPT trong giải toán Tổ hợp - Xác suất 2.3.1. Một số khó khăn cơ bản của học sinh THPT trong giải toán Tổ hợp - Xác suất 2.3.1.1.Khó khăn do HS chưa có khả năng trực giác xác suất Trực giác xác suất là trực giác Toán học được thể hiện trong nghiên cứu các tình huống Xác suất (được hiểu theo nghĩa rộng, bao gồm cả những tình huống trong các mô hình Toán học – Xác suất, lẫn những tình huống thực tiễn mang đặc trưng Xác suất). Ví dụ 1.1: Chúng ta xem xét câu hỏi sau: Cần mời bao nhiêu người đến tham dự một buổi dạ hội sao cho xác suất để hai người trong số họ có cùng ngày sinh lớn hơn 50%? Bằng trực giác, nhiều HS sẽ suy luận như sau: Một năm có 365 ngày (không tính năm nhuận), do đó có thể đoán rằng cần phải mời ít nhất 182 người (khoảng một nửa của 365) để có hai người có cùng ngày sinh. Tuy nhiên trên thực tế, từ quan điểm Toán học xác suất, chỉ cần 23 người khách mời là đủ. 2.3.1.2. Khó khăn do mối quan hệ giữa ngữ nghĩa và cú pháp của ngôn ngữ tổ hợp - xác suất HS vẫn hay nhầm giữa kí hiệu với khái niệm được định nghĩa. Theo Nguyễn Bá Kim: “Trong Toán học, người ta phân biệt cái kí hiệu và cái được kí hiệu, cái biểu diễn và cái được biểu diễn. Nếu xem xét phương diện những cái kí hiệu, những cái biểu diễn, đi vào cấu trúc hình thức và những quy tắc hình thức để xác định và biến đổi chúng, thì đó là phương diện cú pháp. Nếu xem xét những cái được kí hiệu, những cái được biểu diễn, tức là đi vào nội dung, nghĩa của những cái kí hiệu, những cái biễu diễn thì đó là phương diện ngữ nghĩa” [10]. Ví dụ 1.2: Do sự lẫn lộn giữa đối tượng được định nghĩa và kí hiệu dùng để chỉ số đối tượng ấy nên HS thường hay nói “Tổ hợp chập k của n là ”, hoặc “Chỉnh hợp chập k của n là ”, trong khi đó nói đúng phải là “ Số Tổ hợp chập k của n là ”, hoặc “Số Chỉnh hợp chập k của n là ”. 2.3.1.3 Khó khăn trong việc nhận thức các suy luận có lý trong sự phân biệt với suy luận diễn dịch Trong mối liên hệ logic của Toán học ứng dụng, khi học Lí thuyết xác suất HS buộc phải làm việc với cả suy luận diễn dịch lẫn suy luận hợp lí; thêm vào đó cũng tại thời điểm này, các em đã và đang phải rèn luyện sử dụng các suy luận diễn dịch. Do đó làm thế nào để HS nhận thức được các suy luận hợp lí trong sự phân biệt với các suy luận diễn dịch? Đồng thời làm thế nào để giúp các em sử dụng kết hợp hai suy luận này trong quá trình học Xác suất? Ví dụ 1.3: Chính vì chưa nắm được sự suy luận hợp lí trong suy luận diễn dịch nên có HS giải thích như sau: Khi biết rằng “Xác suất để bạn H bắn trúng bia (khi bạn đó bắn vào bia một viên đạn) bằng 0,8” có nghĩa là cứ 10 lần cho bạn H bắn vào bia một viên đạn trong những điều kiện cơ bản không đổi của trường bắn thì có đúng 8 lần bạn H bắn trúng bia. Cách giải thích trên là hoàn toàn sai, để khắc phục sự những khó khăn đó tôi sẽ giải quyết ở phần sau của đề tài. 2.3.1.4. Khó khăn do khả năng dự đoán và liên tưởng Thực tế dạy học hiện nay cho thấy rằng, không ít các GV đã tiến hành giảng dạy mà không đặt ra những tình huống để HS dự đoán lí, do là nếu để cho HS dự đoán sẽ tốn nhiều thời gian. Thực ra, cho HS dự đoán, tự tìm tòi, mò mẫm khám phá tri thức có thể mất nhiều thời gian nhưng sẽ rất có ích cho việc phát triển tư duy độc lập của HS cũng như bản lĩnh của HS trong những tình huống chưa biết cách giải trong Toán học cũng như trong cuộc sống. 2.3.2. Sai lầm thường gặp của học sinh Trung học phổ thông trong giải toán chủ đề Tổ hợp - Xác suất 2.3.2.1. Sai lầm khi nhận dạng và thể hiện khái niệm tổ hợp - xác suất Sai lầm về các khái niệm Toán học đặc biệt là các khái niệm ban đầu có tính chất nền tảng sẽ dẫn đến hệ quả tất yếu học kém toán. Vì vậy có thể nói sự “mất gốc” của HS về kiến thức Toán học trước hết đó là sự “mất gốc” về các khái niệm. Ví dụ 1.4: Trong một đội văn nghệ có 35 nam và 24 nữ. Cần chọn hai người, một nam và một nữ đi biểu diễn trong lễ kỉ niệm mừng ngày Quốc khánh. Hỏi có bao nhiêu cách chọn? Lời giải sai: áp dụng quy tắc cộng cho rằng 35 + 24 = 59 cách chọn. Sai lầm: Thực ra ở đây phải dùng quy tắc nhân và ta có 35.24= 840 cách chọn. Nếu chỉ chọn một người thì mới áp dụng quy tắc cộng. 2.3.2.2. Sai lầm trong việc lựa chọn các khái niệm, quy tắc, định lý để vận dụng vào giải toán Kiến thức về Tổ hợp và Xác suất có nhiều khái niệm, quy tắc mới mà khi vận dụng vào giải Toán HS rất hay nhầm lẫn và dẫn đến sai lầm. Ví dụ 1.5: Một dạ tiệc có 10 nam và 6 nữ đều khiêu vũ giỏi. Người ta chọn 3 nam và 3 nữ để ghép thành 3 cặp nhảy. Hỏi có bao nhiêu cách ghép 3 cặp nhảy. Lời giải sai: Mỗi cách sắp thứ tự 3 bạn nam trong 10 bạn nam là một chỉnh hợp chập 3 của 10, nên số cách chọn 3 bạn nam có thứ tự là cách. Tương tự số cách chọn 3 bạn nữ: cách Vậy số cách bố trí 3 cặp nhảy là Sai lầm: Sai lầm dẫn tới số cách ghép lớn hơn thực tế vì có những cách ghép 3 cặp nhảy được tính nhiều lần. 2.3.2.3. Sai lầm liên quan đến ngôn ngữ diễn đạt HS thường mắc phải các kiểu sai lầm ngôn ngữ phổ biến sau * Sai lầm về cú pháp và ngữ nghĩa Ví dụ 1.6: Sau khi biết (1), HS có thể chứng minh được công thức (2) bằng cách áp dụng trực tiếp công thức (1). Tuy nhiên, ít HS có thể thấy được (2) một cách trực giác và chứng minh (2) bằng định nghĩa của, HS không hiểu bản chất là, một tập X (gồm n phần tử) có bao nhiêu tập con gồm k () phần tử thì cũng sẽ có bấy nhiêu tập con gồm phần tử. * Lẫn lộn giữa đối tượng được định nghĩa và đối tượng dùng để chỉ đối tượng ấy. Theo A. A. Stôliar, không ít HS còn yếu trong việc nắm cú pháp của ngôn ngữ Toán học. VD như HS thường hay nói “Tổ hợp chập k của n là ”,... 2.3.2.4. Sai lầm liên quan đến suy luận, phân chia bài toán thành các trường hợp riêng. HS thường gặp những khó khăn và sai lầm khi giải những bài toán có liên quan đến việc phân chia trường hợp. Nhìn từ góc độ tổng quát thì việc phân chia trường hợp trong quá trình giải Toán vô cùng phong phú và đa dạng, nó không theo một khuôn mẫu cố định nào. Do đó, khi thực hiện HS gặp rất nhiều khó khăn, mắc phải rất nhiều sai lầm, thậm chí không tìm ra được cơ sở để phân chia trường hợp. 2.3.2.5. Sai lầm khi thực hiện các phép biến đổi tương đương HS thường mắc phải sai lầm khi thực hiện chuyển đổi bài toán bằng các phép biến đổi tương đương. Ví dụ 1.7: Giải phương trình: Lời giải sai: Ta có phương trình tương đương với . Vậy phương trình có 3 nghiệm. Sai lầm: Lời giải trên còn thiếu điều kiện x N và x3 nên phương trình trên chỉ có 1 nghiệm là x = 4. 2.3.2.6. Sai lầm liên quan đến trực giác Trực giác là năng lực nhận thức được chân lí bằng cách xét đoán trực tiếp không có sự biện giải bằng chứng minh. Trực giác toán học được hiểu với nhiều ý nghĩa khác nhau và trên thực tế tồn tại nhiều dạng khác nhau. 2.4. Một số biện pháp khắc phục khó khăn và sai lầm thường gặp 2.4.1. Định hướng xây dựng một số biện pháp khắc phục những khó khăn và sai lầm thường gặp trong giải toán Tổ hợp - Xác suất cho học sinh Trung học phổ thông - Định hướng 1: Hệ thống các biện pháp được xây dựng dựa trên cơ sở tôn trọng nội dung chương trình, SGK, các tài liệu chuyên đề và các nguyên tắc dạy học. - Định hướng 2: Hệ thống các biện pháp được xây dựng phải dựa trên định hướng đổi mới PPDH hiện nay; tạo cho HS có một môi trường hoạt động tích cực, tự giác, sáng tạo. - Định hướng 3: Hệ thống các biện pháp được xây dựng phải mang tính khả thi, có thể thực hiện được trong điều kiện thực tế của quá trình dạy học. - Định hướng 4: Trong quá trình thực hiện các biện pháp, cần quan tâm đúng mức tới việc tăng cường hoạt động cho người học, phát huy tối đa tính tích cực, độc lập cho người học. 2.4.2. Một số biện pháp khắc phục những khó khăn và sai lầm thường gặp trong giải toán chủ đề Tổ hợp - Xác suất cho học sinh Trung học phổ thông 2.4.2.1. Biện pháp 1: Rèn luyện cho học sinh nắm vững bản chất và ý nghĩa của các khái niệm, quy tắc, ký hiệu trong sách giáo khoa từ đó vận dụng trong giải toán Tổ hợp - Xác suất Khi dạy các công thức về tổ hợp, có thể HS rất lúng túng khi nhớ các công thức tính , , , nhờ đó ta có thể đặt câu hỏi: Có cách gì để nhớ được các công thức trên mà không bị nhầm lẫn? Để trả lời cho câu hỏi đó HS sẽ phải tích cực suy nghĩ tìm ra cách nhớ nhanh nhất và thầy giáo có thể nhận được rất nhiều phương án. Cũng nhờ quá trình tìm tòi đó HS đã nhớ công thức rồi. Sai lầm phổ biến của HS trong giải toán Tổ hợp là hay nhầm lẫn giữa các quy tắc nhân và cộng, lúng túng không biết khi nào sử dụng chỉnh hợp và khi nào sử dụng tổ hợp. 2.4.2.2. Biện pháp 2: Tạo tình huống phù hợp với trình độ nhận thức để phát huy tính tích cực của học sinh trong giải toán Tổ hợp - Xác suất Khi ra một bài toán nào đó (không riêng về toán Tổ hợp và Xác suất) thì trong suy nghĩ của người GV tự hỏi ra để làm gì? mục đích của nó? Cần chọn một bài rất cơ bản và thật sự cơ bản giảng cho hiểu sau đó nâng nó lên và dần đến tổng quát hoá và cố gắng chọn bài nào cho có nhiều mối liên hệ với nhiều bài khác để các em cùng xây dựng. Trong chừng mực nào đó phương pháp nói sao cho truyền cảm đúng chỗ; nhấn mạnh đúng lúc; chỉ cho các em chỗ hay, chỗ thiếu tự nhiên trong giải bài toán trên; nó sai ở đâu và vì đâu mà sai? Thường xuyên tìm hiểu rộng cách giải của HS và khai thác chúng; nếu thấy nó khá hiệu quả nên khen với tình cảm thân mật. VD: Các em xem lại cách giải của bạn thấy thế nào? bạn đã khai thác ra sao? Các em có hứng thú với cách giải đó không?. . . Cuối cùng là khích lệ HS. Làm như thế chúng ta đã phát huy được tính tích cực hoạt động học tập của HS. Ví dụ 1.8: Sau khi đã biết khi gieo một con xúc xắc đối xứng một lần thì xác suất xuất hiện của mỗi mặt là . Yêu cầu HS làm bài tập sau: Tính xác suất để khi gieo con xúc xắc 6 lần độc lập không có lần nào xuất hiện mặt có số chấm chẵn. Để giải bài này, GV hướng dẫn HS bằng những câu hỏi: Hãy tính xác suất để khi gieo con xúc xác một lần không xuất hiện mặt có số chấm chẵn? ( bằng ) Yêu cầu của bài là gieo 6 lần độc lập, hãy liên tưởng đến quy tắc nhân xác suất? Từ đó HS sẽ tính được xác suất là Yêu cầu cao hơn với bài toán: Gieo đồng thời hai con xúc xắc 24 lần độc lập. Tính xác suất để ít nhất có một lần cả hai con đều ra “lục”. Trước hết ta xét khi gieo đồng thời hai con xúc xắc 1 lần: Tính số phần tử của không gian mẫu? ( bằng = 36) Xác suất để khi gieo đồng thời hai con xúc xắc 1 lần mà không có con nào ra “lục” là Gọi A là biến cố: “ít nhất một lần cả hai con đều ra “lục””, khi gieo đồng thời hai con xúc xắc 24 lần Khi đó yêu cầu HS phân tích các trường hợp xảy ra của bến cố A và nhận xét, HS sẽ thấy rằng nếu tính trực tiếp xác suất của biến cố A thì rất phức tạp, nhưng có thể tính được dễ dàng xác suất của biến cố , đó là P() =, suy ra được 2.4.2.3. Biện pháp 3: Xác định và tập luyện cho học sinh thuật giải một số dạng toán Tổ hợp - Xác suất và vận dụng quy trình giải toán của G. Polia Tư duy thuật giải có vai trò quan trọng trong nhà trường phổ thông đặc biệt trong dạy học giải bài tập toán. Trong môn toán nói chung và chủ đề Tổ hợp – xác xuất nói riêng, có nhiều dạng toán được giải quyết nhờ thuật giải. * Xác định quy tắc thuật giải một số dạng toán: GV có thể xác định và tập luyện cho HS một số quy tắc thuật giải và tựa thuật giải để HS giải toán. Chẳng hạn với dạng toán tính xác suất, có thể áp dụng 2 thuật giải sau: a. Thuật giải áp dụng định nghĩa cổ điển của xác suất: Bước 1: Tính số phần tử của không gian mẫu(số khả năng xảy ra). Bước 2: Tính số phần tử của tập hợp mô tả biến cố đang xét (số kết quả thuận lợi). Bước 3:Tính xác suất theo công thức: b. Thuật giải áp dụng các qui tắc tính xác suât: * Bước 1: Đặt tên cho biến cố cần tính xác suất là A, các biến cố liên quan đến biến cố A là: sao cho: Biến cố A biểu diễn được theo các biến cố : . Xác xuất của các biến cố:là tính được(dễ hơn so với A) Xác định được mối quan hệ giữa các biến cố. * Bước 2: Biểu diễn biến cố A theo các biến cố. * Bước 3: Xác định mối quan hệ giữa các biến cố và áp dụng qui tắc: 1) Nếu xung khắc: 2) Nếu đối nhau: 3) Nếu độc lập: Chú ý: A và B độc lập thì cũng độc lập và A và B độc lập . * Hướng dẫn học sinh kỹ năng giải bài toán Tổ hợp – xác suất theo quy trình của G. Polya: G. Polya đã từng viết: “Tìm được cách giải một bài toán là một điều phát minh”. Quy trình 4 bước của G. Polya như sau: [33] - Bước 1: Tìm hiểu nội dung bài toán. - Bước 2: Xây dựng chương trình giải cho bài toán. - Bước 3: Thực hiện chương trình giải đã xây dựng ở bước 2. - Bước 4: Nghiên cứu sâu về lời giải. Đối với quy trình này, khi áp dụng vào mỗi dạng toán cụ thể sẽ góp phần tập cho HS xây dựng được một phương pháp chung để giải bài toán đó. Bản chất của việc này là làm cho HS chủ động tiếp thu, dễ hiểu, dễ nhớ kiến thức. 2.4.2.4. Biện pháp 4: Quan tâm phát triển khả năng trực giác xác suất cho học sinh - Giai đoạn trước khi định nghĩa một khái niệm, chứng minh một mệnh đề hay giải một bài toán: GV hướng dẫn HS phân tích, đánh giá tình huống xác suất cụ thể và các khái niệm, mệnh đề bằng các phương pháp trực quan trước khi định nghĩa khái niệm, chứng minh mệnh đề đó. - Giai đoạn trong quá trình định nghĩa một khái niệm, chứng minh một mệnh đề, giải một bài toán: Trong giai đoạn này GV giúp HS củng cố mối liên hệ giữa nội dung của cách giải quyết vấn đề với những điều mà các em đã thấy trước bằng trực giác để xác nhận. - Giai đoạn sau khi định nghĩa một khái niệm, chứng minh một mệnh đề, giải một bài toán: GV hướng dẫn HS cách phân tích, đánh giá kết quả vừa thu được; liên hệ với các tình huống thực tế khác nhau. - Giai đoạn trước khi chứng minh: Trước khi thực hiện chứng minh cần cho HS tập phân tích và đánh giá các tình huống được bao hàm trong tính chất cần chứng minh. - Giai đoạn chứng minh: Từ những điều trên HS có thể phác hoạ được các bước chứng minh và từ đó “thấy trực tiếp” đường lối chứng minh. Do đó trực giác xác suất của HS được hình thành. - Giai đoạn sau chứng minh: GV hướng dẫn HS liên hệ kết quả thu được với các tình huống thực tế khác nhau. 2.4.2.5. Biện pháp 5: Bồi dưỡng tư duy toán học và sử dụng chính xác ngôn ngữ toán học cho học sinh khi giải toán Tổ hợp - Xác suất Ví dụ 1.9: Chứng minh rằng khi thực hiện một số lớn lần lai hai cơ thể bố, mẹ thuần chủng khác một cặp tính trạng tương phản, và xét trong trường hợp trội hoàn toàn, thì ở thế hệ co
Tài liệu đính kèm:
- skkn_khac_phuc_kho_khan_va_sai_lam_thuong_gap_trong_giai_toa.doc