SKKN Hướng dẫn học sinh lớp 11 và học sinh lớp 12 ôn thi tốt nghiệp THPT Quốc Gia sử dụng một số kĩ thuật tìm nghiệm của phương trình lượng giác có điều kiện

SKKN Hướng dẫn học sinh lớp 11 và học sinh lớp 12 ôn thi tốt nghiệp THPT Quốc Gia sử dụng một số kĩ thuật tìm nghiệm của phương trình lượng giác có điều kiện

Chuyên đề về lượng giác đặc biệt là phương trình lượng giác là phần kiến thức quan trọng trong chương trình toán THPT nói chung và trong Đại số và Giải tích 11 nói riêng. Trong năm học 2017 – 2018 này, Bộ GD & ĐT áp dụng thi phần kiến thức toán 11 vào đề thi trắc nghiệm toán trong kỳ thi tốt nghiệp THPT Quốc gia và dạng toán giải phương trình lượng giác, trong đó loại phương trình lượng lượng giác có điều kiện thường làn cho học sinh bối rối. Đa số các em gặp khó khăn trong khâu kết hợp nghiệm của phương trình hệ quả với điều kiện của phương trình ban đầu.

 Đặc thù của phương trình lượng giác thường là có vô số nghiệm và công thức nghiệm cho một phương trình lượng giác có thể có những hình thức biểu diễn khác nhau. Nội dung kiến thức ở phần này tương đối rộng, số lượng tiết học trên lớp chỉ đảm bảo cho các em nắm vững kiến thức cơ bản. Để giải quyết tốt các bài toán giải phương trình lượng giác có điều kiện ở mức độ thi tốt nghiệp THPT Quốc Gia, học sinh cần tìm tòi thêm; biến đồi lượng giác thành thạo, linh hoạt từ đó hình thành kỹ năng xử lí các tình huống nâng cao trong đề thi.

 Nhằm giúp đỡ học sinh có kỹ năng tốt trong việc kết hợp nghiệm với điều kiện của phương trình lượng giác có điều kiện, qua đó có được những phương án giải quyết tối ưu và trọn vẹn cho mỗi bài toán giải phương trình lượng giác có điều kiện, tôi chọn nghiên cứu chuyên đề : “ Hướng dẫn học sinh lớp 11 và học sinh lớp 12 ôn thi tốt nghiệp THPT Quốc Gia sử dụng một số kĩ thuật tìm nghiệm của phương trình lượng giác có điều kiện ”.

 

doc 21 trang thuychi01 5700
Bạn đang xem 20 trang mẫu của tài liệu "SKKN Hướng dẫn học sinh lớp 11 và học sinh lớp 12 ôn thi tốt nghiệp THPT Quốc Gia sử dụng một số kĩ thuật tìm nghiệm của phương trình lượng giác có điều kiện", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
SỞ GIÁO DỤC VÀ ĐÀO TẠO THANH HOÁ
TRƯỜNG THPT LÊ LỢI
SÁNG KIẾN KINH NGHIỆM
TÊN ĐỀ TÀI:
HƯỚNG DẪN HỌC SINH LỚP 11 VÀ HỌC SINH LỚP 12 ÔN THI TỐT NGHIỆP THPT QUỐC GIA SỬ DỤNG MỘT SỐ 
KĨ THUẬT TÌM NGHIỆM CỦA PHƯƠNG TRÌNH 
LƯỢNG GIÁC CÓ ĐIỀU KIỆN 
 Người thực hiện: Đỗ Thị Thủy 
 Chức vụ: Giáo viên
 SKKN thuộc lĩnh vực (môn): Toán
THANH HÓA NĂM 2018
MỤC LỤC
MỤC LỤC
 Nội dung Trang
1. MỞ ĐẦU ......................................................................................... 2
 1.1. Lý do chọn đề tài .. 2
 1.2. Mục đích nghiên cứu  3 
 1.3. Đối tượng nghiên cứu .. 3
 1.4. Phương pháp nghiên cứu . 3
 1.5. Những điểm mới của SKKN  3
2. NỘI DUNG SÁNG KIẾN KINH NGHIỆM ......................................... 4
 2.1. Cơ sở lí luận của sáng kiến kinh nghiệm ......................................... 4
 2.2. Thực trạng vấn đề trước khi áp dụng sáng kiến kinh nghiệm ......... 4
 2.3. Các giải pháp đã sử dụng để giải quyết vấn đề ................................ 4
 2.3.1. Đặt vấn đề ........................................................................ 4
 2.3.2. Một số kĩ thật tìm nghiệm của phương trình lượng giác có 
 điều kiện ............................................................................. 4
 Kĩ thuật 1: Biểu diễn điều kiện và nghiệm thông qua cùng một
 hàm số lượng giác . 4
 Kĩ thuật 2: Kĩ thuật thử trực tiếp  7
 Kĩ thuật 3: Kĩ thuật xét mệnh đề đối lập  9 
 Kĩ thuật 4: Kĩ thuật biểu diễn trên đường tròn lượng giác . 12
 2.4. Hiệu quả của sáng kiến kinh nghiệm đối với hoạt động giái dục, với
 bản thân, đồng nghiệp và nhà trường .............................................. 16
3. KẾT LUẬN, KIẾN NGHỊ .................................................................... 17 
 - Tài liệu tham khảo .............................................................................. 18
	- Danh mục các đề tài SKKN mà tác giả đã được Hội đồng Cấp Sở 
 GD&ĐT và các cấp cao hơn đánh giá đạt từ loại C trở lên ... 19
1. MỞ ĐẦU
1.1. Lý do chọn đề tài :
 Chuyên đề về lượng giác đặc biệt là phương trình lượng giác là phần kiến thức quan trọng trong chương trình toán THPT nói chung và trong Đại số và Giải tích 11 nói riêng. Trong năm học 2017 – 2018 này, Bộ GD & ĐT áp dụng thi phần kiến thức toán 11 vào đề thi trắc nghiệm toán trong kỳ thi tốt nghiệp THPT Quốc gia và dạng toán giải phương trình lượng giác, trong đó loại phương trình lượng lượng giác có điều kiện thường làn cho học sinh bối rối. Đa số các em gặp khó khăn trong khâu kết hợp nghiệm của phương trình hệ quả với điều kiện của phương trình ban đầu.
 Đặc thù của phương trình lượng giác thường là có vô số nghiệm và công thức nghiệm cho một phương trình lượng giác có thể có những hình thức biểu diễn khác nhau. Nội dung kiến thức ở phần này tương đối rộng, số lượng tiết học trên lớp chỉ đảm bảo cho các em nắm vững kiến thức cơ bản. Để giải quyết tốt các bài toán giải phương trình lượng giác có điều kiện ở mức độ thi tốt nghiệp THPT Quốc Gia, học sinh cần tìm tòi thêm; biến đồi lượng giác thành thạo, linh hoạt từ đó hình thành kỹ năng xử lí các tình huống nâng cao trong đề thi.
 Nhằm giúp đỡ học sinh có kỹ năng tốt trong việc kết hợp nghiệm với điều kiện của phương trình lượng giác có điều kiện, qua đó có được những phương án giải quyết tối ưu và trọn vẹn cho mỗi bài toán giải phương trình lượng giác có điều kiện, tôi chọn nghiên cứu chuyên đề : “ Hướng dẫn học sinh lớp 11 và học sinh lớp 12 ôn thi tốt nghiệp THPT Quốc Gia sử dụng một số kĩ thuật tìm nghiệm của phương trình lượng giác có điều kiện ”.
1.2. Mục đích nghiên cứu :
 - Góp phần đổi mới phương pháp dạy học môn toán nói chung và môn Đại số và giải tích 11 nói riêng theo phương hướng phát huy tính tích cực, chủ động và sáng tạo của học sinh, tăng cường ứng dụng thực tế, giúp học sinh có phương pháp học tốt thích ứng với xu hướng hiện nay.
 - Góp phần gây hứng thú học tập môn Toán cho học sinh, một môn học được coi là khô khan, hóc búa, không những chỉ giúp giáo viên lên lớp tự tin, nhẹ nhàng, học sinh lĩnh hội được tri thức một cách đầy đủ, khoa học mà còn giúp các em củng cố và khắc sâu các tri thức .
 - Chuyên đề nhằm rèn luyện cho học sinh kĩ năng tiếp cận vấn đề từ nhiều góc độ khác nhau, từ đó chọn một phương pháp kết hợp nghiệm với điều kiện phù hợp nhất đối với mỗi bài toán phương trình lượng giác cụ thể. Qua đó có thể rút ngắn đáng kể thời gian để nhanh chóng đi đến kết quả. 
1.3. Đối tượng nghiên cứu :
 Đối tượng nghiên cứu là một số kĩ thuật tìm nghiệm của phương trình lượng giác chứa điều kiện.
 Phạm vi : Giới hạn trong việc giải phương trình lượng giác chứa điều kiện.
1.4. Phương pháp nghiên cứu :
	Để thực hiện đề tài này, tôi đã sử dụng các phương pháp sau :
 1.4.1. Nghiên cứu tài liệu : 
 - Đọc các tài liệu sách, báo, tạp chí giáo dục,... có liên quan đến nội dung đề tài.
 - Đọc SGK, sách giáo viên, các loại sách tham khảo.
 2. Nghiên cứu thực tế :
 - Dự giờ, trao đổi ý kiến với đồng nghiệp nội dung về kĩ thuật tìm nghiệm trong phương trình lượng giác có điều kiện .
 - Tổng hợp kiến thức, kiểm nghiệm qua thực tế dạy học.
 - Tập hợp những vấn đề nảy sinh, những băn khoăn, lúng túng của hoc sinh trong quá trình giải quyết bài toán phương trình lượng giác có điều kiện. Từ đó đề xuất phương án giải quyết, tổng kết thành bài học kinh nghiệm. 
1.5. Những điểm mới của SKKN :
 Đề tài tập trung hướng dẫn học sinh giải phương trình lượng giác có điều kiện bằng một số kĩ thuật kết hợp nghiệm. Đặc biệt cố gắng giúp học sinh nhận định được nên áp dụng kĩ thuật nào cho mỗi bài toán cụ thể. Đề tài cũng chú ý rèn luyện cho học sinh biết kết hợp một số kĩ thuật kết hợp nghiệm với điều kiện trong một bài toán phương trình lượng giác. 
2. NỘI DUNG SÁNG KIẾN KINH NGHIỆM
2.1. Cơ sở lý luận của sáng kiến kinh nghiệm :
 Phương pháp giáo dục hiện đại là phải làm sao phát huy được tính tích cực, chủ động của học sinh và bồi dưỡng cho học sinh có năng lực tư duy sáng tạo, năng lực giải quyết vấn đề. Nhằm phục vụ cho lý luận này tôi dựa theo lý luận rằng : bồi dưỡng cho học sinh những kiến thức cơ bản nhất của vấn đề rồi sau đó mới tạo cho học sinh khả năng tự học và độc lập trong suy nghĩ, từ đó học sinh có thể tự mình phân loại các dạng bài tập theo chuyên đề. Có như thế thì học sinh mới dễ dàng làm tốt bài thi trong kỳ thi tốt nghiệp THPT Quốc Gia.
2.2. Thực trạng vấn đề trước khi áp dụng sáng kiến kinh nghiệm :
	Trong quá trình giảng dạy chương trình Đại số và Giải tích lớp 11 cùng với khi ôn thi tốt nghiệp THPT Quốc Gia về phần lượng giác cho học sinh lớp 12, tôi nhận thấy rằng khi giải phương trình lượng giác có điều kiện học sinh thường lúng túng sau khi tìm được họ nghiệm của phương trình hệ quả không biết đối chiếu với điều kiện ban đầu, dẫn đến kết luận họ nghiệm không chính xác. Bài viết này tôi muốn giới thiệu một số kĩ thuật tìm nghiệm của phương trình lượng giác có điều kiện thông qua ví dụ cụ thể. 
2.3. Các giải pháp đã sử dụng để giải quyết vấn đề :
 2.3.1. Đặt vấn đề :
 Phương trình lượng giác có điều kiện ( chủ yếu là phương trình chứa ẩn ở mẫu số hoặc chứa ẩn trong hàm số tan hoặc cot ) là dạng cơ bản hay và khá phức tạp `. Đối với giáo viên việc dạy cho học sinh hiểu và có kĩ thuật đối chiếu nghiệm tìm được với điều kiện không hề dễ dàng. Điều khó khăn cơ bản là số nghiệm của phương trình thường là vô hạn và được biểu diễn dưới dạng .
Hơn nữa cùng một phương trình lượng giác nếu dùng các phép biến đổi khác nhaucos thể thu được các phương trình lượng giác cơ bản khác nhau và từ đó thu được số họ nghiệm cũng như hình thức các họ nghiệm rất khác nhau. 
 Qua quá trình giảng dạy và thực nghiệm sư phạm, để giải quyết phần nào những khó khăn, lúng túng của học sinh khi giải phương trình lượng giác có điều kiện tôi đưa ra một số kĩ thuật tìm nghiệm của phương trình lượng giác có điều kiện thông qua một số ví dụ cụ thể.
 2.3.2. Một số kĩ thuật tìm nghiệm của phương trình lượng giác có điều kiện:
Kĩ thuật 1: Biểu diễn điều kiện và nghiệm thông qua cùng một hàm số lượng giác .
VÍ DỤ MINH HỌA
Ví dụ 1: Giải phương trình sau: (1)
 Hướng dẫn: Các em thấy điều kiện là sinx ≠ 0.
Với kĩ thuật này, các em không cần làm bước mà chỉ cần viết sinx ≠ 0 là được.
Ta có : 
Đến đây các em thấy điều kiện là sinx ≠ 0, còn nghiệm là cho nên hai giá trị của sin đều thỏa mãn và tập nghiệm cần tìm là: 
Nhận xét : Trong phương trình (1), ta đã biến đổi điều kiện và nghiệm tìm được thông qua hàm số y = sinx. Từ đó chuyển việc đối chiếu điều kiện của x về đối chiếu điều kiện của y đơn giản hơn nhiều ( giống như phương trình đại số ).
Ví dụ 2: Giải phương trình sau: (2)
Hướng dẫn: Điều kiện : 
Ta có : 
Đối chiếu với điều kiện, ta chọn được: 
Vậy PT(2) có nghiệm là : ; 
Ví dụ 3: Giải phương trình sau: (3)
Hướng dẫn: Điều kiện : 
Ta có : 
Đối chiếu với điều kiện, ta chọn được: 
Vậy PT(2) có nghiệm là : ; 
Ví dụ 4: Giải phương trình sau: (4)
Hướng dẫn: Điều kiện : 
Ta có: 
Đối chiếu với điều kiện, ta chọn được: 
Vậy PT(4) có nghiệm là : ; 
Ví dụ 5: Giải phương trình sau: (5)
Hướng dẫn: Điều kiện : 
Nhận thấy : , do đó PT(5) trở thành : 
Đối chiếu với điều kiện, ta chọn được: sin2x = 0
Vậy PT(5) có nghiệm là : 
Bài tập đề nghị : 
Bài 1 : Phương trình có nghiệm là :
 A. B. C. D. Vô nghiệm 
Bài 2 : Phương trình có nghiệm là :
 A. B. C. D. 
Bài 3 : Phương trình có nghiệm là :
 A. B. C. D. 
Kĩ thuật 2: Kĩ thuật thử trực tiếp .
 Đối với những phương trình lượng giác mà điều kiện và nghiệm tìm được khó đưa về cùng một hàm số lượng giác, ta có thể tìm nghiệm cụ thể, rồi thay vào điều để kiểm tra lại.
VÍ DỤ MINH HỌA
Ví dụ 1: Giải phương trình sau: (1)
 Hướng dẫn: Điều kiện: cos5x ≠ 0.
Ta có: 
Thay trực tiếp các nghiệm vừa tìm được vào điều kiện :
* Với thì 
* Với thì 
Vậy PT(1) có nghiệm là : ; 
Ví dụ 2: Giải phương trình sau: (1)
 Hướng dẫn: Điều kiện: 
Ta có: 
Thay trực tiếp các nghiệm vừa tìm được vào hệ điều kiện :
* Với thì ( Loại )
* Với thì ( Thỏa mãn )
 ( Thỏa mãn )
* Với thì ( Thỏa mãn )
 ( Loại )
Vậy PT(2) có nghiệm là : 
Ví dụ 3: Giải phương trình sau: (3)
 Hướng dẫn: Điều kiện: cos2x ≠ 0 ; cos3x ≠ 0 ; cos5x ≠ 0.
Ta có: 
+ Nếu 1 + tan2x.tan3x = 0 thì . Khi đó ( vô lí )
+ Nếu 1 + tan2x.tan3x ≠ 0 thì . 
 Vì hàm số y = cos2x ; y = cos3x ; y = cos5x đều có chu kì nên ta chỉ cần thử trực tiếp với k bằng 0 ; 1 ; 2 ; 3 ; 4 ; 5 và thấy k bằng 0 ; 2 ; 4 thỏa mãn 
Vậy PT(1) có nghiệm là : ;  ; 
Nhận xét : Giả sử rằng :
- Điều kiện xác định là trong đó f(x) là hàm số tuần hoàn với chu kì T
- Phương trình hệ quả có nghiệm với và n là số nguyên dương xác định . Khi đó ta đối chiếu điều kiện như sau :
 + Nếu thì ta chỉ cần thử trực tiếp cung x ứng với n giá trị tự nhiên đầu tiên của k là 0, 1, 2, ... , n – 1 .
 + Nếu thì ta cần thử trực tiếp cung x ứng với ln giá trị tự nhiên đầu tiên của k là 0, 1, 2, ... , ln-1.
 Ưu điểm của phương pháp này là đơn giản, dễ hiểu, phù hợp với đại trà nhất là học sinh có lự học trung bình. Tuy nhiên, với n càng lớn thì việc đối chiếu sẽ mất nhiều thời gian.
Bài tập đề nghị : 
Bài 1: Phương trình có nghiệm là :
 A. B. C. D. 
Bài 2: Số nghiệm phương trình với là :
 A. 4 B. 1 C. 2 D. 3 
Bài 3: Số nghiệm phương trình với là :
 A. 4 B. 2 C. 1 D. 3 
Kĩ thuật 3: Kĩ thuật xét mệnh đề đối lập .
 Đối với những phương trình lượng giác mà điều kiện và nghiệm tìm được khó đưa về cùng một hàm số lượng giác cũng như việc thử nghiệm tìm được của phương trình hệ quả vào điều kiện cũng khó khăn, phức tạp, khi đó ta sẽ đi xét mệnh đề đối lập với điều kiện ban đầu như sau : 
 Giả sử điều kiện là x ≠ a , ta xét mệnh đề đối lập là x = a và thay vào phương trình cơ bản (*) thu được cuối cùng xem có thỏa mãn không từ đó có kết luận nghiệm phù hợp :
 - Nếu x = a thỏa mãn PT (*) thì nghiệm của PT(*) không phải là nghiệm của phương trình đã cho. 
 - Nếu x = a không thỏa mãn PT (*) thì nghiệm của PT(*) cũng là nghiệm của phương trình đã cho.
VÍ DỤ MINH HỌA
Ví dụ 1: Giải phương trình sau: (1)
 Hướng dẫn: Điều kiện: cosx ≠ 0 .
Ta có: 
 ( do )
 (*)
Xét mệnh đề đối lập sinx = ± 1 thế vào PT (*) đều không thỏa mãn nên các nghiệm của PT (*) cũng chính là nghiệm của PT (1) 
 Vậy PT(1) có nghiệm là : ; 
Nhận xét : Trong PT(1), điều kiện cosx ≠ 0 biến đổi thành sinx ≠ ± 1, rồi thay 
sinx = ± 1 vào PT(*) đều không thỏa mãn dẫn đến nghiệm của PT(*) chính là nghiệm của PT (1). Như vậy không cần tìm nghiệm cụ thể, ta vẫn có thể đối chiếu được điều kiện.
Ví dụ 2: Giải phương trình sau: (2)
 Hướng dẫn: Điều kiện: sinx ≠ 0 .
Tacó: 
Xét mệnh đề đối lập sinx = 0 thay vào PT(*) không thỏa mãn nên các nghiệm của PT (*) cũng chính là nghiệm của PT (2) 
 Vậy PT(2) có nghiệm là : ; 
Ví dụ 3: Giải phương trình sau: (3)
 Hướng dẫn: Điều kiện: cosx ≠ 0 .
Tacó: 
Xét mệnh đề đối lập cosx = 0 thay vào PT(*) không thỏa mãn nên các nghiệm của PT (*) cũng chính là nghiệm của PT (3) 
 Vậy PT(2) có nghiệm là : ; 
 ( Với )
Ví dụ 4: Giải phương trình sau: (4)
 Hướng dẫn: Điều kiện: cosx ≠ 0 .
Tacó: 
Xét mệnh đề đối lập cosx = 0 thay vào PT(*) không thỏa mãn nên các nghiệm của PT (*) cũng chính là nghiệm của PT (4) 
 Vậy PT(4) có nghiệm là : ;  ; 
Ví dụ 5: Giải phương trình sau: (5)
 Hướng dẫn: Điều kiện: 
Tacó: 
+ Xét mệnh đề đối lập : giả sử 
 Do nên 
 Lại do nên 
 Từ đó k = 7s + 3. Suy ra , với thỏa mãn phương trình.
+ Xét mệnh đề đối lập : giả sử ( Vô lí )
 Suy ra điều kiện luôn được thỏa mãn.
Vậy PT(4) có nghiệm là : , với 
Bài tập đề nghị : 
Bài 1 : Phương trình có nghiệm là :
 A. B. C. D. 
Bài 2 : Nghiệm âm nhỏ nhất của phương trình là :
 A. B. C. D. 
Bài 3 : Phương trình có nghiệm là :
 A. B. C. D. 
Kĩ thuật 4: Kĩ thuật biểu diễn trên đường tròn lượng giác .
 Đây là kỹ thuật rất hay và khá thông dụng, ta sẽ dùng đường tròn lượng giác để tìm nghiệm và loại nghiệm. Ta quy ước :
- Biểu diễn trên đường tròn lượng giác :
 + Những điểm không thỏa mãn điều kiện ( đánh dấu “×” ) 
 + Những điểm là nghiệm tìm được ( đánh dấu “○” )
 Khi đó những điểm đánh dấu “○” mà không trùng với điểm đánh dấu “×” thì những điểm đó biểu diễn nghiệm cần tìm.
 Kĩ thuật này có hiệu quả khi số điểm không thỏa mãn điều kiện là ít và ở vị trí đặc biệt, đồng thời các kĩ thuật đã nêu tỏ ta không hiệu quả.
- Cách biểu diễn: Mỗi cung ( hoặc góc ) lượng giác được biểu diễn bởi một điểm trên đường tròn lượng giác ( quy định gọi tắt là đường tròn )
 i) được biểu diễn trên đường tròn bởi một điểm ( thay k = 0 )
 ii) được biểu diễn trên đường tròn bởi hai điểm đối xứng nhau qua gốc O ( thay k = 0, k = 1 )
 iii) được biểu diễn trên đường tròn bởi ba điểm cách đều nhau, tạo thành ba đỉnh của một tam giác đều nội tiếp đường tròn (thay k= 0, k= 1, k= 2)
Tổng quát: được biểu diễn trên đường tròn bởi n điểm cách đều nhau, tạo thành n đỉnh của một đa giác đều nội tiếp đường tròn ( thay k lần lượt bằng 0; 1; 2; ... ; n-1 )
VÍ DỤ MINH HỌA
Ví dụ 1: Giải phương trình sau: (1)
 Hướng dẫn: Điều kiện: .
Ta có: 
Trên đường tròn lượng giác : 
x
O
y
+ Biểu diễn các nghiệm và bởi 3 điểm ( đánh dấu “○” ) 
+ Biểu diễn và bởi 2 điểm ( đánh dấu “×” ) 
Ta thấy có 1 điểm đánh dấu “○” không trùng với điểm đánh dấu “×”
 Vậy PT(1) có nghiệm là : 
Ví dụ 2: Giải phương trình sau: (2)
 Hướng dẫn: Điều kiện: .
Ta có: 
Trên đường tròn lượng giác : 
x
O
y
+ Biểu diễn các nghiệm bởi 2 điểm ( đánh dấu “○” ) 
+ Biểu diễn và bởi 2 điểm ( đánh dấu “×” ) 
Ta thấy có 1 điểm đánh dấu “○” không trùng với điểm đánh dấu “×”
 Vậy PT(2) có nghiệm là : 
Ví dụ 3: Giải phương trình sau: (3)
 Hướng dẫn: Điều kiện: .
Ta có: 
Trên đường tròn lượng giác : 
x
O
y
+ Biểu diễn các nghiệm và bởi 6 điểm ( đánh dấu “○” ) 
+ Biểu diễn bởi 6 điểm ( đánh dấu “×” ) 
Ta thấy có 2 điểm đánh dấu “○” không trùng với điểm đánh dấu “×”
 Vậy PT(2) có nghiệm là : 
Bài tập đề nghị : 
Bài 1 : Phương trình có tập nghiệm được biểu diễn bởi bao nhiêu điểm trên đường tròn lượng giác ?
 A. 6 B. 5 C. 3 D. 4 
Bài 2 : Phương trình có 2 họ nghiệm dạng và . Khi đó giá trị bằng :
 A. B. C. D. 
Bài 3: Số nghiệm phương trình với là 
 A. 3 B. 2 C. 4 D. 1 
Bài 4: Phương trình có nghiệm là :
 A. B. C. D. 
2.4. Hiệu quả của sáng kiến kinh nghiệm đối với hoạt động giáo dục, với bản thân, đồng nghiệp và nhà trường :
* Trước khi thực hiện đề tài: Tôi cho học sinh lớp 11A1 có lực học trung bình khá làm bài kiểm tra sau trong 15 phút:
ĐỀ KIỂM TRA TRƯỚC TÁC ĐỘNG :
 Giải phương trình : 
Kết quả không khả quan lắm như sau :
Điểm
Giỏi
Khá 
TB
Yếu
SL
%
SL
%
SL
%
SL
%
Lớp 11A1
(Sĩ số 42 )
5
12%
12
29%
16
38%
9
21%
* Sau khi thực hiện đề tài:
Kết thúc đề tài này tôi đã tổ chức cho các em học sinh cũng lớp 11A1 đó làm một đề kiểm tra 15 phút với mức độ nâng cao hơn và nội dung là giải phương trình lượng giác có điều kiện thuộc dạng có trong đề tài :
ĐỀ KIỂM TRA SAU TÁC ĐỘNG 
 Giải phương trình : 
Kết quả rất khả quan, cụ thể như sau:
Điểm
Giỏi
Khá 
TB
Yếu
SL
%
SL
%
SL
%
SL
%
Lớp 11A1
(Sĩ số 42 )
11
26%
19
45%
10
24%
2
5%
 Rõ ràng là đã có sự khác biệt giữa trước và sau khi thực hiện đề tài. Như vậy là việc hướng dẫn cho học sinh lớp 11 và học sinh lớp 12 ôn thi tốt nghiệp THPT Quốc Gia sử dụng một số kĩ thuật tìm nghiệm của phương trình lượng giác có điều kiện đã giúp các em tỏ ra rất say mê, hứng thú học tập, đó có thể coi là một thành công của người giáo viên. chắc chắn một số kĩ thuật mà tôi nêu ra trong đề tài đã giúp các em không cảm thấy lúng túng khi giải phương trình lượng giác có điều kiện, giúp các em tự tin hơn trong học tập cũng như khi đi thi Tốt nghiệp THPT Quốc Gia.
3. KẾT LUẬN, KIẾN NGHỊ
3.1. Kết luận:
* Kết quả áp dụng: 
 Qua việc thực hiện chuyên đề trên đối với lớp 11A1 có học lực trung binh khá, kết quả thu được rất khả quan, học sinh nắm vững kĩ thuật tìm nghiệm khi giải phương trình lượng giác có điều kiện, học tập say mê và hứng thú.
* Tự đánh giá :
 Sáng kiến có tính khả thi, có thể áp dụng để dạy học toán chuyên đề phương trình lượng giác trong trương THPT Lê Lợi, Thọ Xuân.
 Trong quá trình nghiên cứu thực hiện đề tài không tránh khỏi những thiếu sót, hạn chế, bản thân tôi rất mong đồng nghiệp quan tâm, chia sẻ và đóng góp ý kiến để đề tài được hoàn chỉnh hơn, nhằm giúp tôi từng bước hoàn thiện phương pháp giảng dạy của mình. Đồng thời các giáo viên tổ Toán cũng có thể áp dụng cho học sinh lớp 11 và lớp 12 ôn thi tốt nghiệp THPT Quốc Gia của mình đang giảng dạy nhằm giúp cho học sinh có thêm kĩ năng giải phương trình lượng giác.
3.2. Kiến nghị:
 Do thời gian có hạn nên đề tài chỉ đề cập đến những kĩ thuật cơ bản về kết hợp nghiệm với điều kiện của phương trình lượng giác có điều kiện. Đề tài có thể nghiên cứu để mở rộng với các bài toán giải phương trình kết hợp giữa hàm số lượng giác và các hàm số mũ, hàm số logarrit và hàm chứa ẩn dưới dấu căn 
XÁC NHẬN 
CỦA THỦ TRƯỞNG ĐƠN VỊ
Thanh Hóa, ngày 25 tháng 5 năm 2018
CAM KẾT KHÔNG COPY.
Người viết SKKN :
Đỗ Thị Thủy
TÀI LIỆU THAM KHẢO
1. Báo Toán học và Tuổi trẻ từ năm 2013 đến nay.
2. Sách giáo khoa Đại số và Giải tích 11 – NXB Giáo dục
3. Sách giáo viên Đại số và Giải tích 11 – NXB Giáo dục
4. Sách bài tập Đại số và Giải tích 11 – NXB Giáo dục
5. Bài tập nâng cao và một số chuyên đề Đại số và Giải tích 11 – Nguyễn Xuân Liêm, Đặng Hùng Thắng – NXB Giáo dục, 2008.
6. Phương pháp giải phương trình lượng giác – Lê Hồng Đức – NXB Đại học Sư phạm, 2004 .
7. Tuyển tập các đề thi thử Tốt nghiệp THPT Quốc gia năm học 2017 – 2018 của các trường trên cả nước qua Internet.
8. Giới thiệu đề thi chính thức Tuyển sinh vào Đại học và Cao đẳng môn Toán – NXB Đại học Sư phạm, 2014.
DANH MỤC
CÁC ĐỀ TÀI SÁNG KIẾN KINH NGHIỆM ĐÃ ĐƯỢC HỘI ĐỒNG ĐÁNH GIÁ XẾP LOẠI CẤP PHÒNG GD&ĐT, CẤP SỞ GD&ĐT VÀ CÁC CẤP CAO HƠN XẾP LOẠI TỪ C TRỞ LÊN
Họ và tên tác giả: Đỗ Thị Thủy
Chức vụ và đơn vị công tác: Giáo viên Trường THPT Lê Lợi 
 – Thọ Xuân – Thanh Hóa
TT
Tên đề tài SKKN
Cấp đánh giá xếp loại (Phòng, Sở, Tỉnh...)
Kết quả đánh giá xếp loại (A, B, hoặc C)
Năm học đánh giá 
xếp loại
1
Nhận dạng tam giác bằng phương pháp sử dụng tam thức bậc hai và tí

Tài liệu đính kèm:

  • docskkn_huong_dan_hoc_sinh_lop_11_va_hoc_sinh_lop_12_on_thi_tot.doc