Chuyên đề Toán lũy thừa trong Q

Thông qua giảng dạy, tôi thấy hầu hết học sinh cứ thấy bài toán liên quan đến luỹ thừa là sợ, đặc biệt là luỹ thừa với số mũ lớn , số mũ tổng quát. Như đã nói ở trên, học sinh lớp 6, lớp 7 mới được tiếp xúc với toán luỹ thừa, trong sách giáo khoa yêu cầu ở mức độ vừa phải, nhẹ nhàng. Chính vì thế mà khi giáo viên chỉ cần thay đổi yêu cầu của đề bài là học sinh đã thấy khác lạ, khi nâng cao lên một chút là các em gặp khăn chồng chất: Làm bằng cách nào? làm như thế nào? ...chứ chưa cần trả lời các câu hỏi: làm thế nào nhanh hơn, ngắn gọn hơn, độc đáo hơn?
Tôi chọn chuyên đề này với mong muốn giúp học sinh học tốt hơn phần toán luỹ thừa, giúp các em không còn thấy sợ khi gặp một bài toán luỹ thừa hay và khó. Hy vọng rằng đây sẽ là tài liệu tham khảo bổ ích cho học sinh lớp 6, lớp7 khi học và đào sâu kiến thức toán luỹ thừa dưới dạng các bài tập.
Mục lục Trang A. Đặt vấn đề B. Nội dung và phương pháp I .Tình hình chung II .Những vấn đề được giải quyết III .Phương pháp tiến hành 1. Cơ sở lí thuyết 2. Các dạng bài tập 2.1. Dạng 1: Tìm số chưa biết 2.1.1. Tìm cơ số, thành phần cơ số của luỹ thừa 2.1.2. Tìm số mũ, thành phần số mũ của luỹ thừa 2.1.3. Một số trường hợp khác 2.2. Dạng 2 : Tìm chữ số tận cùng của giá trị luỹ thừa 2.2.1. Tìm một chữ số tận cùng 2.2.2. Tìm 2 chữ số tận cùng 2.2.3. Tìm 3 chữ số tận cùng trở lên 2.3. Dạng 3: So sánh hai luỹ thừa 2.4. Dạng 4. Tính toán trên các luỹ thừa 2.5. Dạng 5: Toán đố với luỹ thừa 3. Kết quả thực hiện VI. Những vấn đề hạn chế và hướng tiếp tục nghiên cứu V. Điều kiện áp dụng C. Kết luận Tài liệu tham khảo Nội dung và phương pháp I. Tình hình chung Thông qua giảng dạy, tôi thấy hầu hết học sinh cứ thấy bài toán liên quan đến luỹ thừa là sợ, đặc biệt là luỹ thừa với số mũ lớn , số mũ tổng quát. Như đã nói ở trên, học sinh lớp 6, lớp 7 mới được tiếp xúc với toán luỹ thừa, trong sách giáo khoa yêu cầu ở mức độ vừa phải, nhẹ nhàng. Chính vì thế mà khi giáo viên chỉ cần thay đổi yêu cầu của đề bài là học sinh đã thấy khác lạ, khi nâng cao lên một chút là các em gặp khăn chồng chất: Làm bằng cách nào? làm như thế nào? ...chứ chưa cần trả lời các câu hỏi: làm thế nào nhanh hơn, ngắn gọn hơn, độc đáo hơn? Tôi chọn chuyên đề này với mong muốn giúp học sinh học tốt hơn phần toán luỹ thừa, giúp các em không còn thấy sợ khi gặp một bài toán luỹ thừa hay và khó. Hy vọng rằng đây sẽ là tài liệu tham khảo bổ ích cho học sinh lớp 6, lớp7 khi học và đào sâu kiến thức toán luỹ thừa dưới dạng các bài tập. II. Những vấn đề được giải quyết. 1. Kiến thức cơ bản 2. Kiến thức bổ sung 3. Các dạng bài tập và phương pháp chung 3.1. Dạng1: Tìm số chưa biết 3.1.1. Tìm cơ số, thành phần trong cơ số của luỹ thừa 3.1.2. Tìm số mũ, thành phần trong số mũ của luỹ thừa 3.1.3. Một số trường hợp khác 3.2. Dạng 2. Tìm chữ số tận cùng của giá trị luỹ thừa 3.2.1. Tìm một chữ số tận cùng 3.2.2. Tìm hai chữ số tận cùng 3.2.3. Tìm 3 chữ số tận cùng trở lên 3.3. Dạng 3. So sánh hai luỹ thừa 3.4. Dạng 4. Tính toán trên các luỹ thừa 3.5. Dạng 5. Toán đố với luỹ thừa III. Phương pháp tiến hành. 1. CƠ Sở Lý THUYếT a. Định nghĩa luỹ thừa với số mũ tự nhiên z x . z > y . z * Với x Q, n N: (-x)2n = x2n (-x)2n+1 = - x2n+1 * Với a, b Q; a > b > 0 => an > bn a > b a2n +1 > b2n + 1 a > 1 , m > n > 0 => am > an 0 n > 0 => am > an 2. Các dạng bài tập 1. Dạng 1: Tìm số chưa biết 2.1.1. Tìm cơ số, thành phần của cơ số trong luỹ thừa *Phương pháp: Đưa về hai luỹ thừa cùng số mũ Bài 1: Tìm x biết rằng: a, x3 = -27 b, (2x – 1)3 = 8 c, (x – 2)2 = 16 d, (2x – 3)2 = 9 Đối với bài toán này, học sinh chỉ cần nắm vững kiến thức cơ bản là có thể dễ dàng làm được, lưu ý với số mũ chẵn, học sinh cần xét hai trường hợp. a, x3 = -27 b, (2x – 1)3 = 8 x3 = (-3)3 (2x – 1)3 = (-2)3 x = -3 => 2x – 1 = - 2 Vậy x = - 3 2x = -2 + 1 2x = - 1 1 => x = 2 1 Vậy x = 2 c, (2x – 3)2 = 9 => (2x – 3)2 = (-3)2 = 32 => 2x -3 =3 hoặc 2x -3 = -3 2x = 6 2x = 0 x = 3 x = 0 Vậy x = 3 hoặc x = 0 . d , (x - 2)2 = 16 => (x - 2)2 = (-4)2 = 42 6 3 => x = = x = -2 4 2 Bài 4 : Tìm x và y biết : (3x - 5)100 + (2y + 1)200 0 (*) Với bài toán này , cơ số và số mũ của hai lũy thừa không giống nhau , lại phải tìm hai số x và y bên cạnh đó là dấu ‘ ’’ , thật là khó ! Lúc này chỉ cần gợi ý nhỏ của giáo viên là các em có thể giải quyết được vấn đề : hãy so sánh (3x - 5)100 và (2y +1)200 với 0 . Ta thấy : (3x - 5)100 0 x Q (2y +1)200 0 x Q => Biểu thức (*) chỉ có thể bằng 0 , không thể nhỏ hơn 0 Vậy : (3x - 5)100 + (2y + 1)200 = 0 khi (3x - 5)100 = (2y + 1)200 = 0 3x – 5 = 2y + 1 =0 5 1 => x = và y = 3 2 Bài 5 :Tìm các số nguyên x và y sao cho : (x + 2)2 + 2(y – 3)2 < 4 Theo bài 3 , học sinh sẽ nhận ra ngay : (x + 2)2 0 x Z (1) 2(y – 3)2 0 x Z (2) Nhưng nảy sinh vấn đề ở “ < 4 ” , học sinh không biết làm thế nào. Giáo viên có thể gợi ý : Từ (1) và (2) suy ra, để : (x + 2)2 + 2(y – 3)2 < 4 thì chỉ có thể xảy ra những trường hợp sau : +) Trường hợp 1 : (x + 2)2 = 0 và (y – 3)2 = 0 => x = -2 => y = 3 +) Trường hợp 2 : (x + 2)2 = 0 và (y – 3)2 = 1 y 4 => x = -2 => y 2 +) Trường hợp 3 : (x + 2)2 = 1 và (y – 3)2 = 0 x 2 1 => => y = 3 x 2 1 x 1 => x 3 +) Trường hợp 4 : (x + 2)2 = 1 và (y – 3)2 = 1 => 5n = 650 : 26 5n = 25 = 52 => n = 2 Theo hướng làm câu b, học sinh có ngay cách làm câu c, và d, c, 32-n. 16n = 1024 (25)-n. (24)n = 1024 2-5n. 24n = 210 2-n = 210 => n = -10 d, 3-1.3n + 5.3n-1 = 162 3n-1 + 5 . 3n-1 = 162 =>6 . 3n-1 = 162 3n-1 = 27 = 33 => n – 1 = 3 n = 4 Bài 2 : Tìm hai số tự nhiên m , n biết : 2m + 2n = 2m+n Học sinh thực sự thấy khó khi gặp bài này , không biết phải làm như thế nào để tìm được hai số mũ m và n . Giáo viên gợi ý : 2m + 2n = 2m+n 2m+n – 2m – 2n = 0 => 2m.2n -2m -2n + 1 = 1 2m(2n - 1) – (2n - 1) = 1 (2m - 1)( 2n - 1) = 1 (*) Vì 2m 1 , 2n 1 m,n N 2m 1 1 2m 2 m 1 Nên từ (*) => => => n n 2 1 1 2 2 n 1 Vậy : m = n = 1 Bài 3 : Tìm các số tự nhiên n sao cho : a, 3 < 3n 234 b, 8.16 2n 4 2x+1 . 3y = 22x.3x 3 y 22x => 3x 2 x1 3y-x = 2x+1 => y-x = x-1 = 0 Hay x = y = 1 b. 10x : 5y = 20y 10x = 20y . 5y 10x = 100y 10x = 1002y => x = 2y 45 45 45 45 65 65 65 65 65 65 4 b. . 2n 35 35 35 25 25 4.45 6.65 . 2n 3.35 2.25 46 66 . 2n 36 26 => 46 = 2n => 212 = 2n => n = 12 3.1.3. Một số trường hợp khác Bài 1: Tìm x biết: (x-1) x+2 = (x-1)x+4 (1) Thoạt nhìn ta thấy đây là một bài toán rất phức tạp, vì số cần tìm có mặt cả trong số mũ và cơ số. Vì thế, học sinh rất khó xác định cách giải . Nhưng chúng ta có thể đưa về bài toán quen thuộc bằng một phép biến đổi sau : Đặt x-1 = y ta có: x + 2 = y + 3 x + 4 = y + 5 Khi đó (1) trở thành : yy+3 = yy+5 yy+5 - yy+3 = 0 yy+3(y2 – 1) = 0 => yy+3 = 0 hoặc y2 – 1 = 0. * Nếu: yy+3 = 0 => y = 0 Khi đó : x – 1 = 0 hay x = 1. Kết luận : Vậy : a = 0 và b = 3. b) 10a + 168 = b2 (2) Tương tự câu a * Xét a = 0, khi đó (2) trở thành 100 + 168 = b2 169 = b2 (±13)2 = b2 => b = 13 (vì b N) Do đó a = 0 và b = 13. * Xét a 1. Chúng ta đều biết với mọi số tự nhiên a 1 thì 10a có chữ số tận cùng là 0 nên suy ra 10a + 168 có chữ số tận cùng là 8, theo (2) thì b2 có chữ số tận cùng là 8. Điều này vô lý. Kết luận : Vậy : a = 0 và b = 13. Giáo viên có thể cho học sinh làm một số bài tập tương tự sau : Tìm các số tự nhiên a , b để : a. 3a + 9b = 183 b. 5a + 323 = b2 c. 2a + 342 = 7b d. 2a + 80 = 3b 3.2. Dạng 2 : Tìm chữ số tận cùng của một giá trị lũy thừa 3.2.1 Tìm một chữ số tận cùng * Phương pháp : cần nắm được một số nhận xét sau : +) Tất cả các số có chữ số tận cùng là : 0 ; 1 ; 5 ; 6 nâng lên lũy thừa nào ( khác 0) cũng có chữ số tận cùng là chính những số đó . +) Để tìm chữ số tận cùng của một số ta thường đưa về dạng các số có chữ số tận cùng là một trong các chữ số đó . +) Lưu ý : những số có chữ số tận cùng là 4 nâng lên lũy thừa bậc chẵn sẽ có chữ số tận cùng là 6 và nâng lên lũy thừa bậc lẻ sẽ có chữ số tận cùng là 4 . những số có chữ số tận cùng là 9 nâng lên lũy thừa bậc chẵn sẽ có chữ số tận cùng là 1 và nâng lên lũy thừa bậc lẻ sẽ có chữ số tận cùng là 9 +) Chú ý : 24 = 16 74 = 2401 34 = 81 84 = 4096
Tài liệu đính kèm:
chuyen_de_toan_luy_thua_trong_q.docx