Sáng kiến kinh nghiệm Hướng dẫn học sinh vận dụng hệ thức Vi-et vào giải một số dạng toán

Để phát huy tính tích cực, tự giác, chủ động của học sinh nhằm bồi dưỡng và phát triển trí tuệ và năng lực hoạt động của học sinh là nhiệm vụ trọng tâm trong quá trình dạy học là nội dung của việc đổi mới phương pháp dạy học.
Dạy học Toán là dạy cho học sinh phương pháp học toán và giải toán để vận dụng kiến thức đã học vào giải toán thực tế cuộc sống. Nội dung kiến thức toán học được trang bị cho học sinh THCS ngoài việc dạy lí thuyết còn phải chú trọng tới việc dạy học sinh phương pháp giải một số bài toán, nhưng để nắm vững cách giải 1 dạng toán nào đó đòi hỏi học sinh phải biết vận dụng kiến thức đã học một cách linh hoạt, sáng tạo, tính cẩn thận, kết hợp với sự khéo léo và kinh nghiệm đã tích luỹ được để giải quyết các bài tập có liên quan. Thông qua việc giải bài tập các em được rèn luyện kĩ năng vận dụng kiến thức đã học vào giải bài tập, kĩ năng trình bày, kĩ năng sử dụng máy tính bỏ túi, đồ dùng dạy học. Do đó nâng cao năng lực tư duy, óc tưởng tượng, sáng tạo, rèn khả năng phán đoán, suy luận của học sinh.
BÁO CÁO KẾT QUẢ NGHIÊN CỨU, ỨNG DỤNG SÁNG KIẾN 1. Lời giới thiệu Qua một số năm giảng dạy môn Toán 9 bản thân tôi thấy việc vận dụng hệ thức Vi et vào giải toán các em làm chưa linh hoạt, chưa biết khai thác và sử dụng hệ thức Vi et vào giải nhiều loại bài toán trong khi đó hệ thức Vi et có ứng dụng rất rộng rãi trong việc giải toán. Đặc biệt trong những năm gần đây các đề thi vào THPT áp dụng hệ thức Vi et để giải chiếm 1 đến 2 điểm trong đề thi.Vậy tại sao ta không ôn luyện cho học sinh những dạng toán, những bài tập có vận dụng của hệ thức Vi et để giải? Bản thân tôi luôn suy nghĩ trong điều kiện kinh tế gia đình của nhiều em học sinh còn nhiều khó khăn nên sự quan tâm và tạo điều kiện cho con em mình học tập còn nhiều hạn chế.Vì vậy phần nhiều học sinh còn thiếu tài liệu học tập và sách nâng cao để học. Do đó việc ôn tập, hướng dẫn cho học sinh vận dụng hệ thức Vi et vào giải toán là rất cần thiết đối với các em bởi các dạng toán liên quan đến hệ thức Vi et rất đa dạng phong phú, thời lượng học theo chương trình lại rất ít chỉ có 01 tiết lý thuyết và 01 tiết luyện tập trên lớp. Do đó nếu không được hướng dẫn thì học sinh sẽ không khỏi lúng túng khi gặp một số dạng toán lạ hoặc một bài toán khó.Vì vậy sự định hướng trước cho học sinh khi gặp các bài toán liên quan đến hệ thức Vi et là một việc làm thiết thực. Từ thực tế nêu trên để dạy học sinh lớp 9 phần hệ thức Vi et và hướng dẫn học sinh lớp 9 ôn thi vào 10 có kết quả cao tôi đã nghiên cứu đề tài: ‘Hướng dẫn học sinh vận dụng hệ thức Vi et vào giải một số dạng toán’. 2. Tên sáng kiến: Hướng dẫn học sinh vận dụng hệ thức Vi et vào giải một số dạng toán 3. Tác giả sáng kiến: - Họ và tên : Phan Thị Huệ - Địa chỉ tác giả sáng kiến : Giáo viên trường THCS Tân Phong - Bình Xuyên- Vĩnh Phúc - Số điện thoại : 0914792223 E mail : phanthihue179@gmail.com 4. Chủ đầu tư tạo ra sáng kiến: Tác giả sáng kiến kinh nghiệm: Phan Thị Huệ. Giáo viên: Trường THCS Tân Phong - Bình xuyên -Vĩnh Phúc. 5. Lĩnh vực áp dụng sáng kiến : Sáng kiến kinh nghiệm được áp dụng trong lĩnh vực giảng dạy môn Toán, vấn đề được giải quyết là Hướng dẫn học sinh vận dụng hệ thức Vi et vào giải một số dạng toán bậc THCS 6. Ngày sáng kiến được áp dụng lần đầu hoặc áp dụng thử: 1 7.1.3. Hướng dẫn học sinh vận dụng hệ thức Vi et vào giải một số dạng toán. a. Hệ thức Vi ét: - Nếu x1 ; x2 là hai nghiệm của phương trình bậc hai : ax2 + bx + c = 0 a 0 b x x 1 2 a thì c x .x 1 2 a 3 2 - Nếu phương trình bậc ba: ax + bx + cx + d = 0 a 0 có 3 nghiệm là x1 ; x2 ; x3 b x x x 1 2 3 a c thì x1x2 x2 x3 x3 x1 I a d x1.x2 x3 a Và ngược lại nếu 3 số x1 ; x2 ; x3 là thỏa mãn hệ thức I thì x1 ;x2 ;x3 là nghiệm của phương trình bậc ba ax3 + bx2 + cx + d = 0 a 0 +) Hệ quả 1: Nếu phương trình ax2 + bx + c = 0 a 0 có a + b + c = 0 c thì phương trình có một nghiệm x 1 còn nghiệm kia là x . 1 2 a +) Hệ quả 2: Nếu phương trình ax2 + bx + c = 0 a 0 có a - b + c = 0 c thì phương trình có một nghiệm x 1 còn nghiệm kia là x . 1 2 a 3 2 +) Hệ quả 3: Nếu phương trình ax + bx +cx + d = 0 a 0 có nghiệm x0 2 thì phương trình phân tich được thành x-x0 .Ax +Bx + C = 0 +) Có nghiệm x 1 nếu a b c d 0 +) Có nghiệm x 1 nếu a b c d 0 b. Tìm hai số biết tổng và tích của chúng: Nếu 2 số u và v có tổng u + v = S vả tích u.v = P thì hai số u và v là hai nghiệm của phương trình bậc hai: x 2 Sx P 0 Thật vậy: Các số u; v nếu tồn tại là các nghiệm của phương trình: x - u.x - v= 0 x2 - u+v x + u.v = 0 x2 - Sx + P = 0 Như vậy khi biết tổng và tích hai số thì ta sẽ tìm được hai số đó thông qua việc giải phương trình bậc hai. Điều kiện để có hai số là: S2 - 4P 0 * Một số ví dụ 3 1 1 phương trình có hai nghiệm là: x1 1 ; x2 3 3 d) m - 1 x2 -2m + 3 x + m + 4 = 0 a m - 1;b = -2m + 3 ; c = m + 4 Vì a - b + c =m - 1- -2m + 3 + m + 4 = 0 m 1 1 m phương trình có hai nghiệm là: x 1 ; x . 1 2 m 4 m 4 Sau khi tính được nghiệm của phương trình xong tôi đã yêu cầu các em sử dụng máy tính bỏ túi Casio giải phương trình để kiểm tra các nghiệm vừa tìm được ở phần a và b. Kết luận: - Khi giải một phương trình bậc hai ta cần chú ý vận dụng hệ thức Vi et để tính nhẩm nghiệm của phương trình nếu có thể. Nếu không tính nhẩm được nghiệm của phương trình thì ta mới dùng công thức nghiệm để giải. - Việc vận dụng hệ quả của hệ thức Vi et và tính toán cho phép tính nhanh chóng nghiệm của phương trình. Các em có nhận xét gì nếu ta thay đổi yêu cầu của bài toán như sau: +. Ví dụ 2: Giải phương trình a) 5x3 - 6x2 + 8x - 7 = 0 b) 4x3 +2x2 + 8x +10 = 0 Hướng dẫn cách giải: Hãy vận dụng hệ thức Vi – ét vào tính nhẩm các nghiệm của phương trình bậc ba: ax3 + bx2 +cx + d = 0 a 0 +) Có nghiệm x 1 nếu a b c d 0 +) Có nghiệm x 1 nếu a b c d 0 - Khi đó các em trình bày lời giải như sau: Giải: a) 5x3 - 6x2 + 8x - 7 = 0 có tổng các hệ số a + b + c + d = 5 - 6 + 8 - 7 = 0 nên phương trình có nghiệm x 1 khi đó phương trình 5x3 - 6x2 + 8x - 7 = 0 5x3 - 5x2 - x2 - x + 7x - 7= 0 5x2.x - 1 - x.x - 1 + 7.x - 1= 0 x - 1.5x2 - x + 7 = 0 x - 1 = 0 1 2 5x - x + 7= 0 2 +) Giải phương trình 1 x - 1= 0 x =1 +) Giải phương trình 2 5x2 - x + 7 = 0 Ta có 12 4.5.7 1140 141 0 141 5 x2 Đặt y ta dược phương trình y2 5y 6 0 x +1 bằng phương pháp nhẩm nghiệm ta tính được y1 1 và y2 6 x2 +) Với y 1 1 x2 1. x 1 x2 x 1 0 1 x +1 1 5 1 5 Giải phương trình này ta được 2 nghiệm x ; x 1 2 2 2 x2 +) Với y 6 6 x2 6 x 1 x2 6x 6 0 2 x +1 Giải phương trình này ta được 2 nghiệm x3 3 3 ; x4 3 3 1 5 1 5 Vậy phương trình đã cho có 4 nghiệm x ; x ;x 3 3 ; 1 2 2 2 3 x4 3 3 ➢ Qua ví dụ 3 tôi đã hướng dẫn cho học sinh cách giải phương trình bằng cách vận dụng hệ thức Vi ét vào tính nhẩm nghiệm của phương trình bậc hai một ẩn và hướng dẫn cách biến đổi linh hoạt (đặt ẩn phụ) để đưa phương trình bậc 4 về phương trình bậc hai một ẩn có thể nhẩm nghiệm được qua đó các em được rèn luyện kĩ năng biến đổi và trình bày lời giải, vận dụng kiến thức, khả năng phân tích, dự đoán. . . Phương pháp chung: - Vận dụng các hệ quả của hệ thức Vi ét để tính nhẩm các nghiệm của phương trình bậc hai, bậc ba. Hoặc các phương trình đưa được về dạng cơ bản để tinh nhẩm nghiệm. *. Dạng II: Vận dụng hệ thức Vi et vào việc tìm 2 số khi biết tổng và tích của chúng: Nếu hai số u và v có tổng u + v = S và tích u.v = P thì hai số u và v là hai nghiệm của phương trình bậc hai: x 2 Sx P 0 ( SGK Toán 9 - Trang 52) Điều kiện để có hai số là: S2 - 4P 0 +. Ví dụ 1: a) Tìm 2 số biết tổng của chúng bằng 27 và tích của chúng bằng 180. b) Tìm 2 số biết tổng của chúng bằng 1 và tích của chúng bằng 5. Hướng dẫn cách giải: Tìm 2 số biết tổng của chúng bằng 27 và tích của chúng bằng 180. x1 x2 27 Tức là ta cần tìm 2 số x1 và x2 biết . Nếu áp dụng hệ thức Vi et x1.x2 180 2 đảo thì x1 và x2 là 2 nghiệm của phương trình bậc hai x - 27x + 180 = 0 ta có lời giải như sau: 7 b) Gọi các cạch của hình chữ nhật là a và b ta có hệ phương trình 2.a b 20 a b 10 a.b 32 a.b 32 Nên a và b là 2 nghiệm của phương trình bậc hai: x2 - 10x + 32 = 0 Ta có: ' 52 1.32 7 0 phương trình vô nghiệm Vậy không tồn tại hình chữ nhật nào có chu vi là 20 cm và diện tích bằng 32 cm2. Kết luận: Muốn tìm hai số khi biết tổng và tích của chúng, ta áp dụng hệ thức Vi et để đưa về dạng phương trình bậc hai một ẩn rồi giải. * Dạng III: Vận dụng hệ thức Vi et vào việc tìm hệ thức liên hệ giữa các nghiệm không phụ thuộc vào tham số. - Xét các bài toán đối với các nghiệm của một phuơng trình chứa tham số. Tìm hệ thức liên hệ giữa 2 nghiệm không phụ thuộc vào tham số. Muốn giải bài toán này trước hết ta phải đặt điều kiện để phương trình đã cho có nghiệm, sau đó áp dụng hệ thức Vi et để tính tổng và tích các nghiệm của phương trình (S và P) +) Nếu tổng và tích không chứa tham số thì ta có ngay hệ thức liên hệ giữa 2 nghiệm không phụ thuộc vào tham số. +) Nếu tổng và tích có chứa tham số thì khử tham số từ S và P. Từ đó tính được hệ thưc phải tìm +. Ví dụ 1: Cho phương trình: x2 - 2m + 1 x + m - 4 = 0 (1) a) CMR: Phương trình (1) luôn có hai nghiệm phân biệt. b) CMR: Giá trị biểu thức A = x1 1 - x2 + x2 1 - x1 không phụ thuộc vào m. Giải a)Xét phương trình: x2 - 2m + 1 x + m - 4 = 0 1 2 2 2 1 19 Ta có: ' m + 1 1.m 4 m m 5 m 0 m R 2 4 Vậy phương trình có 2 nghiệm phân biệt với mọi giá trị của m b) - Áp dụng hệ thức Vi et cho phương trình x2 - 2m + 1 x + m - 4 = 0 1 x1 x2 2m 2 ta có: x1.x2 m 4 Khi đó A x1 1 - x2 + x2 1 - x1 x1 x1x2 + x2 x1x2 x1 + x2 2x1x2 2m 2 2m 4 10 m R Vậy giá trị biểu thức A không phụ thuộc vào m. +. Ví dụ 2: Cho phương trình: x2 - 2m - 1 x + m2 - m - 1 = 0 (1) 9
Tài liệu đính kèm:
sang_kien_kinh_nghiem_huong_dan_hoc_sinh_van_dung_he_thuc_vi.doc